Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Physical Sciences and Mathematics

Identification Of Control Targets In Boolean Molecular Network Models Via Computational Algebra, David Murrugarra, Alan Veliz-Cuba, Boris Aguilar, Reinhard Laubenbacher Sep 2016

Identification Of Control Targets In Boolean Molecular Network Models Via Computational Algebra, David Murrugarra, Alan Veliz-Cuba, Boris Aguilar, Reinhard Laubenbacher

Mathematics Faculty Publications

Background: Many problems in biomedicine and other areas of the life sciences can be characterized as control problems, with the goal of finding strategies to change a disease or otherwise undesirable state of a biological system into another, more desirable, state through an intervention, such as a drug or other therapeutic treatment. The identification of such strategies is typically based on a mathematical model of the process to be altered through targeted control inputs. This paper focuses on processes at the molecular level that determine the state of an individual cell, involving signaling or gene regulation. The mathematical model type …


A Model For Spheroid Versus Monolayer Response Of Sk-N-Sh Neuroblastoma Cells To Treatment With 15-Deoxy-Pgj2, Dorothy I. Wallace, Ann Dunham, Paula X. Chen, Michelle Chen, Milan Huynh, Evan Rheingold, Olivia F. Prosper Jan 2016

A Model For Spheroid Versus Monolayer Response Of Sk-N-Sh Neuroblastoma Cells To Treatment With 15-Deoxy-Pgj2, Dorothy I. Wallace, Ann Dunham, Paula X. Chen, Michelle Chen, Milan Huynh, Evan Rheingold, Olivia F. Prosper

Mathematics Faculty Publications

Researchers have observed that response of tumor cells to treatment varies depending on whether the cells are grown in monolayer, as in vitro spheroids or in vivo. This study uses data from the literature on monolayer treatment of SK-N-SH neuroblastoma cells with 15-deoxy-PGJ2 and couples it with data on growth rates for untreated SK-N-SH neuroblastoma cells grown as multicellular spheroids. A linear model is constructed for untreated and treated monolayer data sets, which is tuned to growth, death, and cell cycle data for the monolayer case for both control and treatment with 15-deoxy-PGJ2. The monolayer …