Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Inorganic Chemistry

Theses/Dissertations

2019

Institution
Keyword
Publication

Articles 1 - 30 of 70

Full-Text Articles in Physical Sciences and Mathematics

Hypervalent Iodine Compounds With Carboxylate And Tetrazolate Ligands, Avichal Vaish Dec 2019

Hypervalent Iodine Compounds With Carboxylate And Tetrazolate Ligands, Avichal Vaish

Chemistry Theses and Dissertations

In modern organic chemistry, hypervalent (HV) iodine(III) compounds are frequently used as oxidizing agents but application of λ3-iodanes in polymer and material chemistry is still underexplored. This dissertation describes the preparation of dynamic and self-healing materials by employing ligand exchange reactions involving HV iodine(III) compounds of the type ArIL2 (Ar = Aryl, L = ligand, e.g., carboxylate or (pseudo)halide). These compounds can undergo ligand exchange reactions in presence of nucleophiles (Nu-) to form ArINu2. Diacetoxyiodo benzene was successfully employed as a crosslinker to prepare dynamic and self-healing gels derived from carboxylate-containing polymers. Furthermore, …


Greening Of Catalytic Processes Using First-Row Transition Metals For Atom Transfer Radical Addition And Transfer Hydrogenation, Gabrielle Pros Dec 2019

Greening Of Catalytic Processes Using First-Row Transition Metals For Atom Transfer Radical Addition And Transfer Hydrogenation, Gabrielle Pros

Electronic Theses and Dissertations

This work focused on “greening” catalytic processes, atom transfer radical addition (ATRA), which adds an alkyl halide across and alkene, and transfer hydrogenation/dehydrogenation, which reduces a carbonyl without needing direct H2 gas. Part of “greening” of these processes is through using abundant first row metals, Cu and Ni for catalysis. One aim was to design new ligands which would be more active in these systems; the second was investigation of additives for catalyst regeneration to reduce the catalyst loading necessary for high yields.

The TPMA* family was investigated in ATRA. Rate constants followed the expected trend, which increased …


High-Pressure Studies On The Transition From Red Phosphorus To Black Phosphorus, Heng Xiang Dec 2019

High-Pressure Studies On The Transition From Red Phosphorus To Black Phosphorus, Heng Xiang

Electronic Thesis and Dissertation Repository

Black phosphorus (BP) is a promising material in many research fields. However, the transition process from amorphous red phosphorus (ARP) is elusive and hence hinders large scale synthesis and applications. This work describes the application of the high-pressure method to study the transition process from ARP to BP.

In this thesis, the following three objectives were achieved: (1) to understand the mechanism of the transition, (2) to facilitate the synthesis of BP by taking the advantage of less pure ARP, (3) to propose new methods of synthesizing BP-based materials, such as the moderately oxidized BP and the black phosphorus/ amorphous …


Oxygen Deficient Perovskites: Effect Of Structure On Electrical Conductivity, Magnetism And Electrocatalytic Activity., Ram Krishna Hona Dec 2019

Oxygen Deficient Perovskites: Effect Of Structure On Electrical Conductivity, Magnetism And Electrocatalytic Activity., Ram Krishna Hona

Electronic Theses and Dissertations

The present thesis deals with the synthesis and study of the physico-chemical properties of perovskite based oxide materials. Several novel oxygen deficient perovskites (ODP) have been synthesized by conventional solid state synthesis method. The novel compounds are CaSrFe2O6-δ, CaSrFeCoO6-δ, Ca2Fe1.5Ga0.5O5, CaSrFeGaO5 and BaSrFe2O5. Their magnetic, charge transport and electrocatalytic properties have been studied. Structural effect on electrical conductivity, magnetic and electrocatalytic properties have been studied in some series of ODPs. CaSrFe2O6-δ, CaSrFeCoO6-δ, Ca2Fe …


Towards The Synthesis Of An Artificial Fluorescent Siderophore, Ashley Burns Dec 2019

Towards The Synthesis Of An Artificial Fluorescent Siderophore, Ashley Burns

Honors Theses

Siderophores are molecules capable of binding ferric ions with high affinity (Ka = 1052). This thesis outlines our attempts to synthesize an artificial siderophore, which incorporates a signaling group to help monitor the uptake of ferric ions. The artificial siderophore is a tripodal molecular receptor synthesized in a five-step procedure with a proposed final sixth step. Rhodamine 6G azide (95.0% yield) was formed from rhodamine 6G and the synthesis of 2-azidoethanamine was modified from the literature. The tripodal arm portion of the sensor was successfully synthesized by protecting the catechol of 2,3-dihydroxybenzaldehyde to form 3-formyl-1,2-phenylene dimethanesulfonate (98.8% yield). The reduction …


Self-Assembly Of 2d And 3d Metallo-Supramolecules With Increasing Complexity, Bo Song Nov 2019

Self-Assembly Of 2d And 3d Metallo-Supramolecules With Increasing Complexity, Bo Song

USF Tampa Graduate Theses and Dissertations

Synthetic organic chemistry played a crucial role in the construction of molecules through the formation and dissociation of covalent bonds. However, the laborious synthetic procedures as well as the low yield after multiple steps have restricted the pursuit of complicated giant molecules with high efficiency. Being complementary to organic synthesis, self-assembly provided an alternative route to achieving the giant architectures using weak non-covalent interactions in high efficiency, which is in analog to natural systems such as DNA, peptide, and protein. Among the various interactions, coordination has shown unique advantages in terms of directionality, reversibility and strength. Serving as a bottom-up …


Investigations Of The High Pressure Effects On Structural Properties And Co2 Adsorption Performance Of Mofs Using Vibrational Spectroscopy, Shan Jiang Nov 2019

Investigations Of The High Pressure Effects On Structural Properties And Co2 Adsorption Performance Of Mofs Using Vibrational Spectroscopy, Shan Jiang

Electronic Thesis and Dissertation Repository

The pre- and post-combustion carbon dioxide capture has drawn much attention in the past few decades owing to the increasing concentration of CO2 in the atmosphere. Among all the potential solid adsorbents for CO2 capture, metal-organic frameworks (MOFs) are a promising class of materials due to their large surface areas, high tunability and their high selectivity for gas adsorption applications. It has been widely demonstrated that the application of high external pressure in gigapascal level can substantially tune the structure, pore size and opening of porous material. Consequently, the structural, as well as gas adsorption properties of these …


Providing Molecular Insight For Understanding Anion Exchange Membrane Conductivity, Michael Kwasny Oct 2019

Providing Molecular Insight For Understanding Anion Exchange Membrane Conductivity, Michael Kwasny

Doctoral Dissertations

Anion exchange membranes (AEMs) are notorious for having both low alkaline stability and poor ion conductivity in fuel cell operation conditions, with solutions to these two challenges often being developed independent of each other. The chemical instability of an AEM is viewed through degradation of the polymer backbone and the cationic species and improving a material’s stability is approached by altering the polymer backbone, the cation, or both. On the other hand, poor ion conductivity is typically addressed by modifying bulk membrane properties such as increasing the ion exchange capacity (IEC), changing the morphology, or increasing the water uptake. These …


Progress Toward Durable Icephobic Materials, Matthew J. Coady Oct 2019

Progress Toward Durable Icephobic Materials, Matthew J. Coady

Electronic Thesis and Dissertation Repository

Ice accumulation is a major engineering challenge in many fields including aerospace, power generation, transportation, and infrastructure. A variety of solutions are being researched to address this challenge. Perhaps the most promising method of combating ice accumulation is by applying coatings with low values of interfacial ice adhesion strength, τice. Icephobic materials are those with ice adhesion below 100 kPa, and it has been shown that passive delamination can occur on surfaces with τice below 20 kPa. While various low adhesion surfaces have been prepared, durability concerns pervade applications where surfaces experience repeated icing or freeze-thaw cycles, …


Zinc–Phosphorus Clusters For Solution Synthesis Of Zinc Phosphide Nanoparticles, Kyungseop Lee Oct 2019

Zinc–Phosphorus Clusters For Solution Synthesis Of Zinc Phosphide Nanoparticles, Kyungseop Lee

Electronic Thesis and Dissertation Repository

Synthesis of zinc phosphide (Zn3P2) nanoparticles is an emerging topic of investigation as Zn3P2 is a candidate material for the next generation solar cells. Despite the early discovery of its favorable electronic properties that are well-suited for photovoltaic applications, a major focus of synthetic strategy was with vapor/chemical deposition methods. Solution methods with greater control over size, crystal structure and composition at a lower production cost, has been underdeveloped in comparison. In this context, this thesis describes the synthesis, characterization and reactivity of zinc phosphido clusters: [Zn2(μ-PPh2)2(PPh …


Syntheses, Characterization, And Preliminary Evaluation Of Potential Ruthenium Anticancer Complexes Containing Schiff Base Ligands, Stephen Mensah Oct 2019

Syntheses, Characterization, And Preliminary Evaluation Of Potential Ruthenium Anticancer Complexes Containing Schiff Base Ligands, Stephen Mensah

Theses and Dissertations

Platinum-based drugs have over the years been administered in the treatment of tumours.

Unfortunately, platinum resistance and the severe side effects associated with the treatments has necessitated the research for new anti-cancer drugs. Ruthenium(II) and Ruthenium(III) complexes have shown promise as useful alternative anticancer agents. The lead candidates include the Ru(II) complex RAPTA-C, a ruthenium(II)-arene complex [Ru(η6-p-cymene)Cl2(1,3,5-triaza-7-phosphaadamantane)] and the Ru(III) complex NAMI-A [imidazoleH][trans-Ru(imidazole) (dimethyl sulfoxide)Cl4]. Both compounds have shown potent cytotoxic activity in several primary human tumor models. Unfortunately, NAMI-A could not advance in clinical evaluations due to limited efficacy in vivo, while the clinical evaluation of RAPTA-C is unknown. …


Methodologies For Metal Functionalization Of Phosphorus Based Photopolymer Networks, Vanessa Béland Oct 2019

Methodologies For Metal Functionalization Of Phosphorus Based Photopolymer Networks, Vanessa Béland

Electronic Thesis and Dissertation Repository

Photopolymer networks with phosphonium cation, alkyl phosphine and olefin functionality were designed, synthesized and functionalized with metals by metathesis, coordination and hydrometallation reactions, respectively. The materials were strategically designed so that the metal functionalization step could be monitored and quantified. In some cases, this involved characterization by IR, NMR, or X-ray spectroscopic techniques, or by comparison to molecular analogues. It was found that by using a bi-functional photopolymer network, the material could be bi-metallized by orthogonal mechanisms. All metallized polymer networks were tested for their suitability as precursors to metal-containing ceramics. The polymers were pyrolyzed, and on analysis it was …


Synthesis And Characterization Of Multifunctional Transition Metal Oxide Nanoparticles Through A Modified Sol-Gel Method With Application In Energy Storage, Julien Lombardi Sep 2019

Synthesis And Characterization Of Multifunctional Transition Metal Oxide Nanoparticles Through A Modified Sol-Gel Method With Application In Energy Storage, Julien Lombardi

Dissertations, Theses, and Capstone Projects

The Synthesis of transition metal oxide nanoparticles has been studied in great detail over the many years. The most studied transition metal oxide nanoparticles are perovskites of the ABO3 stoichiometry (A and B = transition metal) and more recently double perovskite crystal structures of the AA’BO6 or A2BB’O6 stoichiometry due to the many different properties arising from the many different combinations of elements possible. These materials have proven potentially useful in many fields, but due to properties such as ferroelectricity and ferromagnetism, the desire to integrate these materials into electronics is ever growing. Many synthesis …


Synthesis And Characterization Of Heteronuclear Inorganic Complexes For The Photodegradation Of Persistant Organic Pollutants, Matthew A. Moyet Aug 2019

Synthesis And Characterization Of Heteronuclear Inorganic Complexes For The Photodegradation Of Persistant Organic Pollutants, Matthew A. Moyet

Electronic Theses and Dissertations

The focus of this thesis is to investigate the structural modification and characterization potential of common photocatalysts that have various uses for environmental remediation purposes. Pollution involving organic chemicals is one of the most common scenarios found in communities throughout the country. Efforts to rid contaminated drinking water supplies of these chemicals include physical and chemical filters, which have limited ability and efficacy. This lack of efficient filtration services has led to an increased demand for more effective treatment methods. Chemical species that react in the presence of light are known as photocatalysts and have been used in previous studies …


Using An Extended Broken Symmetry Approximation To Characterize Structure And Spectroscopic Properties Of 2fe-2s Clusters, Ashlyn M. Koval Aug 2019

Using An Extended Broken Symmetry Approximation To Characterize Structure And Spectroscopic Properties Of 2fe-2s Clusters, Ashlyn M. Koval

Electronic Theses and Dissertations

Iron-sulfur proteins perform a wide variety of biological functions that assist in mediating protein function via electron transfer reactions. The Rieske and mitoNEET iron-sulfur clusters have been shown to undergo proton coupled electron transfer facilitated by a histidine ligand. The protonation state of the histidine residue is key to understanding the mechanism of proton coupled electron transfer. This work reports a study of the 2Fe-2S ferredoxin, Rieske, and mitoNEET clusters using the extended broken symmetry approximation. Calculations were performed on the ferredoxin cluster to establish appropriate methodologies. Calculations were then performed for Rieske and mitoNEET clusters to suggest experiments capable …


The Reactivity Of Ditetrelenes Towards Organophosphorus Oxides, Maissa Belcina Aug 2019

The Reactivity Of Ditetrelenes Towards Organophosphorus Oxides, Maissa Belcina

Electronic Thesis and Dissertation Repository

The reactivity of tetramesityldisilene 4 and tetramesityldigermene 5 towards organophosphorus oxides was explored in this thesis. The reaction of dialkyl and diarylphosphine oxides and phosphites with ditetrelenes 4 and 5 resulted in a 1,3-addition to form diorganodisilyl and digermyl phosphinites 27, 28, 31, 32 and disilyl phosphites 35 and 36. The 1,3-addition resulted in a mild two electron reduction of the P(V) centre of the phosphine oxide and phosphite to a P(III) centre in the products, without the use of heat or a catalyst. The reaction of organophosphorus oxides provides another example of a main group …


Organic-Inorganic Hybrid Composites: Superhydrophobic Polymer Coatings With Photoreactive Perfluorinated Phthalocyanines, Abdul Azeez Aug 2019

Organic-Inorganic Hybrid Composites: Superhydrophobic Polymer Coatings With Photoreactive Perfluorinated Phthalocyanines, Abdul Azeez

Seton Hall University Dissertations and Theses (ETDs)

ABSTRACT

We report partly fluorinated and silicon-based polymers that incorporate inorganic/organic materials capable of generating reactive oxygen species (ROS) using only visible light and air. Polyvinylidene fluoride (PVDF), which incorporated a known perfluorinated phthalocyanine photosensitizer, F64PcZn, supported on silicon and titanium oxides was further modified via chemical surface roughening to exhibit enhanced hydrophobicity when used as a coating. Water contact angles as high as ~159° have been observed, vs. ~ 92° for the unmodified polymer. The polymer matrix, however, does not resist the ROS it produces as evidenced by spectroscopic and SEM data. A polysiloxane matrix was similarly …


Capabilities And Limitations Of The Spin Hamiltonian Formalism In Single Molecule Magnets, Philip Ferko Jul 2019

Capabilities And Limitations Of The Spin Hamiltonian Formalism In Single Molecule Magnets, Philip Ferko

Dissertations

The rational design of molecular magnetic materials is an ongoing effort involving physics, materials science, and chemistry. A common approach to design of complexes and interpretation of magnetic data is the spin Hamiltonian formalism. In this approach, magnetic data is interpreted through constants extracted from the parameterization of data. In design, certain structural motifs are pursued, rationalized by the minimization or maximization of terms in the spin Hamiltonian. In this work, monometallic complexes were prepared to simplify magnetic behavior and allow the examination of specific factors that influence single molecule magnetism like coordination geometry, ligand identity, symmetry, and spin-orbit coupling. …


Development Of Ni-Catalyzed Alkene Dicarbofunctionalization Reactions, Shekhar Kc Jul 2019

Development Of Ni-Catalyzed Alkene Dicarbofunctionalization Reactions, Shekhar Kc

Chemistry and Chemical Biology ETDs

Alkenes serve as one of the most important feedstocks for organic synthesis, having two vicinal sites for bond formation. In alkenes, both vicinal sites can be functionalized with two reagents in a process commonly known as alkene difunctionalization, which results in the formation of two new bonds. A number of alkenes difunctionalization reactions, such as diamination, dioxygenation, carboamination and carbooxygenation, are known. However, difunctionalization of alkenes with two carbon-based entities, termed alkene dicarbofunctionalization, is relatively less common. Development of such a process could provide a powerful method to introduce two different carbon fragments across an alkene in a regioselective manner, …


Synthesis, Characterization, And Applications Of Group 13 And 14 Complexes Of Chelating Formazanate Ligands, Ryan R. Maar Jul 2019

Synthesis, Characterization, And Applications Of Group 13 And 14 Complexes Of Chelating Formazanate Ligands, Ryan R. Maar

Electronic Thesis and Dissertation Repository

This thesis describes the synthesis and characterization of group 13 (boron and aluminum) and group 14 (silicon, germanium, and tin) complexes supported by chelating formazanate [R1-N-N=C(R3)-N=N-R5] ligands. The resulting complexes are redox-active and often luminescent. Chapters two to four describe the synthesis and characterization of boron formazanate adducts. The work in these chapters demonstrates that through structural modification of the formazanate ligand, solid-state- and NIR photoluminescence can be achieved. Furthermore, the formation of an oxoborane (B=O) afforded a highly photoluminescent formazanate adduct due to the structural rigidity imposed by the B=O bond. These …


Synthesis Of Magnetic Ion Doped Ii-Vi Benzenechalcogenolate Molecular Clusters, Fumitoshi Kato Jul 2019

Synthesis Of Magnetic Ion Doped Ii-Vi Benzenechalcogenolate Molecular Clusters, Fumitoshi Kato

Doctoral Dissertations

Diluted magnetic semiconductor quantum dots (DMS-QDs) is a class of material prepared by introducing a small percentage of magnetic impurities to impart new magneto-optical properties to the host nanocrystal (NC). Such materials are regarded as promising candidates for their potential application in spintronic devices. The overall functionality of the DMS‑QD is highly dependent on the dopant position within the host structure. A thorough understanding of the doping mechanism is, therefore, critical to gain better control over the dopant speciation in nanocrystal lattice and material properties. In this work, we utilized II‑VI molecular clusters that are analogous to bulk semiconductors as …


Modulating Dopant-Defect Interactions In Transition Metal Doped Colloidal Strontium Titanate Nanocrystals, William Harrigan Jul 2019

Modulating Dopant-Defect Interactions In Transition Metal Doped Colloidal Strontium Titanate Nanocrystals, William Harrigan

Doctoral Dissertations

Perovskites such as strontium titanate, a wide band gap semiconductor have been widely studied due to the multitude of potential applications in photocatalysis, multiferroics, sensing, and microelectronics. Various novel optical, electrical and magnetic properties can be imparted through the introduction of different transition metal dopant ions. The introduction of these impurities has been shown to impart functionality for various applications. The use of Cr3+has been shown to introduce defect levels into the band structure of SrTiO3and increase visible light utilization for photocatalysis. Transition metal doped highly crystalline colloidal SrTiO3nanocrystals (NC) were synthesized using two …


Synthesis And Characterization Of A Homogeneous Cobalt Catalyst For The Hydrogenation Of Acetone To Isopropanol, Joselyn G. Molina May 2019

Synthesis And Characterization Of A Homogeneous Cobalt Catalyst For The Hydrogenation Of Acetone To Isopropanol, Joselyn G. Molina

Honors Projects

To lessen environmentalstrain and decrease dependency on noble metals for catalysis, first-row metals are continuously being explored as alternative catalysts for reactions of interest, particularly those that close the carbon cycle or promote fuel production. Recently, homogeneous cobalt catalysts have been shown to be viable options for effective hydrogenation of C-O double bonds, with cobalt-triphos being of particular interest. Here, we report the characterization of synthesized a cobalt-triphos complex by nuclear magnetic resonance spectroscopy and optical spectroscopy. Analysis of the electrochemistry of the cobalt-triphos complex suggests promising electrocatalytic capability for the hydrogenation of acetone to produce isopropanol.


Non-Traditional Metallation Of Metallothioneins With Xenobiotic Therapeutic Metals, Daisy L. Wong May 2019

Non-Traditional Metallation Of Metallothioneins With Xenobiotic Therapeutic Metals, Daisy L. Wong

Electronic Thesis and Dissertation Repository

The rise of the Anthropocene has seen more global pollution than before in history. With the explosion of consumer electronics in the last half century, the rise of metal pollution from their extraction and disposal results in the unnatural introduction of heavy and rare metals into the ecosystem. Organisms have a metal defense protein, metallothionein, which has multiple roles in essential metal regulation and protection against minimal toxic metal exposure. However, these modern heavy metals prominent in electronics are not found biologically and their interactions in the body are generally unknown. Some of these metals are employed as therapeutic agents …


An In-Situ Study Of The Aqueous Speciation Of Uranium (Vi) Under Hydrothermal Conditions, Diwash Dhakal May 2019

An In-Situ Study Of The Aqueous Speciation Of Uranium (Vi) Under Hydrothermal Conditions, Diwash Dhakal

MSU Graduate Theses

Rigorous study of the speciation distribution of uranyl-chloride bearing solutions under hydrothermal conditions is important to understand the transport mechanism of uranium underground, which is of uttermost interest to parties studying the geological uranium deposits and those studying the possibilities of geological repositories for spent nuclear waste. I report an in-situ Raman spectroscopic study of the speciation distribution of aqueous uranyl-chloride complexes upto 500°C conducted using a HDAC as the high PT spectroscopic cell. The samples studied contained the species UO22+, UO2Cl+, UO2Cl20 and UO2Cl3- …


Synthesis, Stabilization, And Modification Of Zinc Oxide Nanoparticles For Biological Applications, Allison Kimberly Freese May 2019

Synthesis, Stabilization, And Modification Of Zinc Oxide Nanoparticles For Biological Applications, Allison Kimberly Freese

MSU Graduate Theses

Nanoparticles have become very useful as delivery systems in biomedicine. The nanoparticles can be layered with different compounds to produce a vessel for transport of biological materials. Specifically, gold nanoparticles layered with a reducing agent, lysozyme, and polyelectrolytes can be synthesized to transport lysozyme into a cell. However, zinc oxide nanoparticles are cheaper, biocompatible nanoparticles that can be used for the same process. Here in, zinc oxide nanoparticle conjugates were synthesized, modified, and analyzed to be used as a biological material delivery system. The zinc oxide nanoparticles were synthesized using zinc chloride and sodium hydroxide. The particles were then layered …


Oxidative C–C And C–Heteroatom Reactivity Of High-Valent Nickel Complexes, Sofia Marie Smith May 2019

Oxidative C–C And C–Heteroatom Reactivity Of High-Valent Nickel Complexes, Sofia Marie Smith

Arts & Sciences Electronic Theses and Dissertations

ABSTRACT OF THE DISSERTATION

Oxidative C–C and C–Heteroatom Reactivity of High-Valent Nickel Complexes

by

Sofia M. Smith

Doctor of Philosophy in Chemistry

Washington University in St. Louis, 2019

Professor Liviu M. Mirica, Chair

Professor Kevin D. Moeller, Co-Chair

Nickel catalysts are commonly used for cross-coupling reactions such as Negishi, Kumada and Suzuki couplings. While Ni(0), Ni(I), and Ni(II) intermediates are most relevant in these transformations, Ni(III) and Ni(IV) species have also been recently proposed to play a role in catalysis. The formation of C–C and C–heteroatom bonds plays a fundamental role in organic transformations, and today cross-coupling reactions are one …


Development Of Bismuth Oxyhalide Photocatalysts For Environmental And Industrial Applications, Robert Arthur May 2019

Development Of Bismuth Oxyhalide Photocatalysts For Environmental And Industrial Applications, Robert Arthur

Electronic Theses and Dissertations

Heterogeneous semiconductor photocatalysis, of interest for water splitting and environmental remediation applications, uses light to drive reactions. Metal oxide and sulfide semiconductors have been previously studied but have limitations that include large band gap energies and high rates of recombination. Bismuth oxyhalides (BiOX) are an emerging class of photocatalysts with tunable band gaps and low rates of recombination due to their unique crystal structures. Studies of BiOX photocatalytic activity have largely focused on removal of azo dyes from aqueous solutions, with little attention paid to degradation byproducts. Furthermore, these catalysts have not been explored as a means to conduct organic …


Optical Memory Behavior, Metallophilic Luminescence, And Chemical Sensing Ability Of Inorganic And Organometallic Complexes: Development Of Optoelectronic Materials, Aaron D. Nicholas May 2019

Optical Memory Behavior, Metallophilic Luminescence, And Chemical Sensing Ability Of Inorganic And Organometallic Complexes: Development Of Optoelectronic Materials, Aaron D. Nicholas

Electronic Theses and Dissertations

This dissertation is divided into three sections: (1) optical memory, (2) metallophilic-based luminescence, and (3) chemical sensors. (1) Optical memory behavior of d10metal Cu(I) thiocyanate salts are investigated to explore their potential use in the development of digital data storage devices. From this study we have discovered a new class of CuSCN(3-BrPy)2optical memory material which undergo a reduction in emission intensity upon laser irradiation. This loss of emission intensity can be reversed simply by heating the sample to room temperature. The mechanism by which this emission loss occurs has been studied, revealing a migrating Br atom …


Synthesis, Characterization And Crystal Growth Of I2-Ii-Iv-Vi4 And I4-Ii-Iv2-Vi7 Diamond-Like Semiconductors With Potential In Ir-Nlo Applications, Jennifer Glenn May 2019

Synthesis, Characterization And Crystal Growth Of I2-Ii-Iv-Vi4 And I4-Ii-Iv2-Vi7 Diamond-Like Semiconductors With Potential In Ir-Nlo Applications, Jennifer Glenn

Electronic Theses and Dissertations

In this dissertation, several new and existing diamond-like semiconductors (DLSs) were synthesized and investigated for their potential in infrared nonlinear optical (IR-NLO) applications. In Chapter 2 growth of large single crystals of Li2MnGeS4 was carried out using iodine vapor transport and a newly created graphite-tube containment system. This crystallization method produced sizable single crystals on the scale of 2x1x1 mm3, that were used to determine the material’s magnetic properties. Magnetization data indicate that the compound is antiferromagnetic with a Néel temperature of 10 K and an effective magnetic moment of 5.6 /f.u.. The specific heat …