Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 5 of 5

Full-Text Articles in Physical Sciences and Mathematics

Production And Adsorption Of Volatile Tellurium Hexafluoride, Stephanie H. Bruffey Dec 2021

Production And Adsorption Of Volatile Tellurium Hexafluoride, Stephanie H. Bruffey

Doctoral Dissertations

Research and development supporting the management of off-gases from nuclear fuel reprocessing has historically been focused on the off-gas streams that arise from aqueous reprocessing technology. With the advent of advanced reactor designs off-gas streams arising from advanced reprocessing methodology, such as that of FV [fluoride volatility] processing, also merit consideration. This work focuses on TeF6 [tellurium hexafluoride], one of the most volatile radioactive compounds produced during FV, and investigates TeF6 production, measurement, and abatement technologies.

To assist in on-line monitoring of TeF6 by Fourier-transformed infrared spectroscopy, this work systematically used the ideal gas law and Beer’s …


Ultrasound-Driven Fabrication Of Nanosized High-Entropy Materials For Heterogeneous Catalysis, Francis Uchenna Okejiri Dec 2021

Ultrasound-Driven Fabrication Of Nanosized High-Entropy Materials For Heterogeneous Catalysis, Francis Uchenna Okejiri

Doctoral Dissertations

High-entropy materials (HEMs) have emerged as a new class of multi-principal-element materials with great technological prospects. As a unique class of concentrated solid-solution materials, HEMs, formed on the premise of incorporating five or more principal elements into a single crystalline phase, provide an excellent opportunity to access superior catalytic materials ‘hiding’ in the unexplored central regions of a multicomponent phase space of higher orders.

However, the fabrication of HEMs is energy-intensive, typically requiring extreme temperatures and/or pressures under which agglomeration of particles occurs with a commensurate decrease in surface area. For most catalytic applications, non-agglomerated particles with high surface areas …


Fabrication Of Specialized Scintillators For Nuclear Security Applications, Cordell James Delzer Aug 2021

Fabrication Of Specialized Scintillators For Nuclear Security Applications, Cordell James Delzer

Doctoral Dissertations

Radiation detectors are important for a variety of fields including medical imaging, oil drilling, and nuclear security. Within nuclear security, they can serve a multitude of purposes whether that be imaging, localization, isotopic identification, or even just activity measurement. Even without directly seeing a nuclear material it is often able to notice their existence without a detector. Scintillators make up an important part of these detectors due to their large intrinsic efficiency, low cost, large volume, and relatively low upkeep. Due to the importance of the large number of purposes these scintillators may be used for, it can often be …


Exploration Of N-Heterocyclic Carbenes For The Functionalization Of Gold Surfaces And Their Metal Complexes, Shelby L. Strausser May 2021

Exploration Of N-Heterocyclic Carbenes For The Functionalization Of Gold Surfaces And Their Metal Complexes, Shelby L. Strausser

Doctoral Dissertations

Gold surface chemistry has progressed considerably towards many applications in medicine. Due to the non-toxic nature of gold in the human body, gold surfaces have been investigated for biometric sensors and targeted drug therapy agents. While gold is relatively unreactive in its elemental form, gold surfaces (such as films or nanoparticles) require a ligand for stability and improved functionality. The typical ligand is thiols for self-assembled monolayers on gold surfaces. While thiol self-assembly on surfaces is well understood, thiols are known to degrade or leach under a wide variety of conditions, including both thermal and chemical, which is toxic in …


Application Of Titrations For Verification Of Small Molecule Interaction In Relation To Amidoximated Fibers For Uranium Extraction From Seawater, Kc Michael Mote May 2021

Application Of Titrations For Verification Of Small Molecule Interaction In Relation To Amidoximated Fibers For Uranium Extraction From Seawater, Kc Michael Mote

Masters Theses

Nuclear energy is a promising substitute for fossil fuels due to possessing low carbon emissions and providing scalable base-load power. However, one major drawback of using nuclear fuel as an energy source is that it needs a steady source of uranium. While the most economical method of obtaining uranium is through conventional terrestrial mining of the ore uranite, mining uranium ores is both harmful to the environment and limited by the terrestrial uranium supply, which is estimated at only 100 more years. However, more than 1000× more uranium is dissolved in seawater than is reasonably inferred and assured in terrestrial …