Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 5 of 5

Full-Text Articles in Physical Sciences and Mathematics

Mechanistic Investigation Of C—C Bond Activation Of Phosphaalkynes With Pt(0) Complexes, Roberto M. Escobar, Abdurrahman C. Ateşin, Christian Müller, William D. Jones, Tülay Ateşin Mar 2024

Mechanistic Investigation Of C—C Bond Activation Of Phosphaalkynes With Pt(0) Complexes, Roberto M. Escobar, Abdurrahman C. Ateşin, Christian Müller, William D. Jones, Tülay Ateşin

Research Symposium

Carbon–carbon (C–C) bond activation has gained increased attention as a direct method for the synthesis of pharmaceuticals. Due to the thermodynamic stability and kinetic inaccessibility of the C–C bonds, however, activation of C–C bonds by homogeneous transition-metal catalysts under mild homogeneous conditions is still a challenge. Most of the systems in which the activation occurs either have aromatization or relief of ring strain as the primary driving force. The activation of unstrained C–C bonds of phosphaalkynes does not have this advantage. This study employs Density Functional Theory (DFT) calculations to elucidate Pt(0)-mediated C–CP bond activation mechanisms in phosphaalkynes. Investigating the …


Transition Metal Computational Catalysis: Mechanistic Approaches And Development Of Novel Performance Metrics, Brett Anthony Smith Dec 2022

Transition Metal Computational Catalysis: Mechanistic Approaches And Development Of Novel Performance Metrics, Brett Anthony Smith

Doctoral Dissertations

Computational catalysis is an ever-growing field, thanks in part to the incredible progression of computational power and the efficiency offered by our current methodologies. Additionally, the accuracy of computation and the emergence of new methods that can decompose energetics and sterics into quantitative descriptors has allowed for researchers to begin to identify important structure-function relationships that predict the properties of unexplored subspaces within the overall chemical space. Catalytic descriptors have been used frequently in data driven high-throughput computational screenings. With the use of machine learning, a large portion of the chemical space an be predicted in matter of minutes or …


How Oxygen-Binding Affects Structural Evolution Of Even-Sized Gold Anion Clusters. (Size Range 20 To 34), David Brunken-Deibert Jul 2020

How Oxygen-Binding Affects Structural Evolution Of Even-Sized Gold Anion Clusters. (Size Range 20 To 34), David Brunken-Deibert

Department of Chemistry: Dissertations, Theses, and Student Research

We report a joint anion photoelectron spectroscopy (PES) and theoretical study to investigate the effect of O2-binding on the mid-sized even-numbered gold clusters, Aun(n = 20−34), a special size region of bare gold clusters that entail rich forms of structural evolution and transformation. Specifically, within this size range, bare Au20− is a highly-symmetric pyramidal cluster, bare Au21-25− are flat-planar or hollow-tubular clusters, bare Au26− is the smallest core-shell gold cluster, while bare Au34− is a magic-number/fluxional core-shell cluster with the high-symmetry tetrahedral Au4 core. In light of the strong …


A Hydrogen-Bond Stabilized Mechanism Of Oxygen Evolution In Photosystem Ii: A Proposed Computational Experiment, Christopher King Jan 2019

A Hydrogen-Bond Stabilized Mechanism Of Oxygen Evolution In Photosystem Ii: A Proposed Computational Experiment, Christopher King

Undergraduate Theses, Professional Papers, and Capstone Artifacts

The ability of plants to take in water and release oxygen into the atmosphere is crucial to the survival of life on Earth. During photosynthesis, water is oxidized to O2 (dioxygen) at the Oxygen Evolving Complex (OEC) of Photosystem II. Structurally, the OEC resembles a box with an open lid, consisting of metal atoms (four manganese and one calcium) bridged by oxygen atoms. The mechanism of action of this complex, however, is not well understood. Various mechanisms have been proposed in recent years to explain how the OEC oxidizes water to dioxygen, but all of these mechanisms contain gaps …


Experimental And Theoretical Analysis Of The Electronic Behavior In Five-Coordinate Iron(Iii) And Six-Coordinate Cobalt(Iii) Complexes With Electroactive Phenol-Rich Ligands, Marco Mathieu Allard Jan 2010

Experimental And Theoretical Analysis Of The Electronic Behavior In Five-Coordinate Iron(Iii) And Six-Coordinate Cobalt(Iii) Complexes With Electroactive Phenol-Rich Ligands, Marco Mathieu Allard

Wayne State University Dissertations

Three 5 coordinate high-spin Iron(III) complexes containing pentadentate N2O5 ligands were synthesized and characterized, namely, (1) [FeIII(L1)] and (2) [FeIII(L2)]. Structural differences in ligand design,N,N,N'-tris(3,5-di-tert-butyl-2-hydroxybenzyl)benzene-1,2-diamine for (1) and N,N,N'-tris-(3,5-di-tert-butyl-2-hydroxybenzyl)-N'-methyl-benzene-1,2-diamine for (2), result in complexes that due to their forced geometry, asymmetry, and slightly different electronic structures are able to foster phenoxyl radicals although show a sensitive dependence to both the solvent and the electrolyte system in the cyclic voltammetry. In the presence of TBAClO4 (1) exhibits a two-electron oxidation, whereas in the presence of TBAPF6 (2), , shows three distinct phenolato/phenoxyl radical couples. Both (1) and (2) were redox-cycled 30 …