Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Inorganic Chemistry

PDF

Theses/Dissertations

Institution
Keyword
Publication Year
Publication

Articles 1 - 30 of 765

Full-Text Articles in Physical Sciences and Mathematics

Towards Carbon Dioxide Reduction: Synthesis And Characterization Of Ccc-Nhc Pincer Iron Complexes., Joshua Mensah May 2024

Towards Carbon Dioxide Reduction: Synthesis And Characterization Of Ccc-Nhc Pincer Iron Complexes., Joshua Mensah

Theses and Dissertations

The industrial revolution came with its downside of emission of greenhouse gases into the atmosphere. The NOAA reported in 2019 that, of the greenhouse gases emitted into the atmosphere, CO2 contributed to about 80% of the increased greenhouse gases hence the need for CO2 Sequestering and Storage (CSS) and ultimately leading to Carbon Capture and Recycling (CCR) as a viable option to convert CO2 into useful forms. The race to find the best catalyst for CCR has led to the synthesis of many organometallic compounds. Pincer complexes catalyzed CO2 reduction has gained notoriety recently because of the tunability and robustness …


Synthesis And Characterization Of Indole-Based Zinc Dipyrrin Photosensitizers, Jean-Pierre Sanza May 2024

Synthesis And Characterization Of Indole-Based Zinc Dipyrrin Photosensitizers, Jean-Pierre Sanza

Electronic Theses and Dissertations

Metal complexes of dipyrromethene (dipyrrins) used as sensitizers in photocatalysis offer a way to harness solar energy in chemical bonds to create new fuels. This offers the dual role of reducing fossil fuel dependence and atmospheric CO2 levels. Traditionally, metal dipyrrin complexes are synthesized using substituted pyrroles, aldehydes, and transition metals. Indoles have a more expanded pi-electron system and their dipyrrin-type complex may exhibit visible light absorption, suggesting that they can act as photosensitizers for CO2 reduction processes. A novel indoledipyrromethene was synthesized using unsubstituted indole and mesitaldehyde. The complex exhibits visible light absorption at 422 nm. Its …


Engineering Multifunctional Silicon Nanostructures From Biorenewable Cellulose Nanocrystals, Nancy Chen May 2024

Engineering Multifunctional Silicon Nanostructures From Biorenewable Cellulose Nanocrystals, Nancy Chen

All Dissertations

The imperative search for alternative materials to address the pressing demand for advance energy storage is underscored by the escalating environmental predicaments. Lithium-ion batteries (LIBs) with graphite anodes have become the benchmark in energy storage; however, they are approaching a saturation point in terms of energy density. Silicon emerges as a promising contender to supplant graphite, owing to its profuse availability, cost-effectiveness, and impressive specific capacity of 4200 mAh g-1. By integrating silicon anodes, LIBs stand to undergo a radical transformation, markedly diminishing in weight and size, thus heralding a novel wave of compact, lightweight energy storage systems. …


Earth Abundant Catalyst For Evironmental Sustainability Applications, Javier Hernandez May 2024

Earth Abundant Catalyst For Evironmental Sustainability Applications, Javier Hernandez

Open Access Theses & Dissertations

The development of experimental methodologies for synthesizing a diverse range of metallic and metal oxide nanoparticles tailored for sustainable water treatment applications was investigated. These nanoparticles are prepared using environmentally friendly and scalable synthesis methods, underscoring their potential for large-scale production. Synthesized nanoparticles are harnessed for various processes, including catalysis and electrocatalysis, with a primary objective of degrading and removing organic pollutants from water. Key to this research is the encapsulation of nanoparticles within solid supports. Multiple methodologies are explored to engineer supports that ensure nanoparticle stabilization, monodispersion, and prevent unintended release into the environment. Two alternative approaches were evaluated …


Investigation Of Magnetic, Spectroscopic, And Structural Properties Of Molecular Metal Compounds, Alexandria Bone May 2024

Investigation Of Magnetic, Spectroscopic, And Structural Properties Of Molecular Metal Compounds, Alexandria Bone

Doctoral Dissertations

Compounds exhibiting single-molecule magnetism (SMM) are of current interest for potential use in molecular data storage and quantum computing applications. However, rapid magnetic relaxation at desired operating temperatures currently limits the use of these materials, and a more thorough understanding of the magnetic and vibrational transitions that affect magnetic memory is required to inform SMM design. The primary focus of this dissertation is the study of magnetic and vibrational modes in molecular magnetic compounds via advanced spectroscopic techniques such as inelastic neutron scattering (INS), far-IR magneto-spectroscopy (FIRMS), and high-field, high-frequency electron paramagnetic resonance (HFEPR) to directly observe transitions among zero-field …


Synthesis And Characterization Of Silver(I) And Manganese(Ii) Complexes With Thione Imidazoles, Shannon Keyser, Audrey Lawrence, Jaime M. Murphy Ph.D. Apr 2024

Synthesis And Characterization Of Silver(I) And Manganese(Ii) Complexes With Thione Imidazoles, Shannon Keyser, Audrey Lawrence, Jaime M. Murphy Ph.D.

Honors Theses

Coordination polymers are chemical complexes with versatile applications such as catalysts, electrical conduc-tors, non-linear optics, magnetics, chemical sensing, and molecular storage. The polymers are comprised of a repeating series of metal-ligand complexes, which form various structures in varying ratios depending on the metal and ligand used. Certain metal-ligand combinations have shown particular promise as potentially being polymers or, if not polymers, possessing other useful features such as electromagnetic conductivity. Complexes were synthesized using silver(I) and manganese(II) with the ligands methimazole, 2-mercaptoimidazole, and thiocarbanilide with counterions of either chloride or nitrate. These com-plexes were characterized using elemental analysis, infrared spectroscopy, and …


Molybdenum Alkylidyne Complexes With Phenoxide Ligands For Alkyne Metathesis, Marvin L. Stewart Jr Apr 2024

Molybdenum Alkylidyne Complexes With Phenoxide Ligands For Alkyne Metathesis, Marvin L. Stewart Jr

LSU Doctoral Dissertations

Abstract

Alkyne metathesis is a powerful synthetic tool, which provides easy access to complex organic molecules in a single-step. It is a dynamic covalent reaction that scrambles alkynes, carbon-carbon triple bonds (C≡C). Molybdenum- or tungsten-alkylidyne (Mo≡C, W≡C) complexes are typically used as catalyst to cleave and reform alkyne bonds. Our goal has been to gain a deeper understanding of the intrinsic differences between functional ligands by the development of novel phenoxide ligands.

In chapter 2 we explore the detailed synthesis of novel phenoxide podand ligands in an effort to identify their mo-alkylidyne complexes. We were able to synthesize a variety …


High Resolution Mass Spectrometry As A Platform For The Analysis Of Polyoxometalates, Their Solution Phase Dynamics, And Their Biological Interactions., Daniel T. Favre Mar 2024

High Resolution Mass Spectrometry As A Platform For The Analysis Of Polyoxometalates, Their Solution Phase Dynamics, And Their Biological Interactions., Daniel T. Favre

Doctoral Dissertations

Polyoxometalates (POMs) are a class of inorganic molecule of increasing interest to the inorganic, bioinorganic and catalytic communities among many others. While their prevalence in research has increased, tools and methodologies for the analysis of their fundamental characteristics still need further development. Decavanadate (V10) specifically has been postulated to have several unique properties that have not been confirmed independently. Mass spectrometry (MS) and its ability to determine the composition of solution phase species by both mass and charge is uniquely well suited to the analysis of POMs. In this work we utilized high-resolution mass spectrometry to characterize V10 in aqueous …


Luminescent Group 11 Metal (I) Chalcogen Clusters With A Conjugated Diphosphine Ligand, Kai Yu Jeffrey Li Jan 2024

Luminescent Group 11 Metal (I) Chalcogen Clusters With A Conjugated Diphosphine Ligand, Kai Yu Jeffrey Li

Electronic Thesis and Dissertation Repository

Polynuclear Au (I) complexes exhibit rich photochemical properties and have the potential to find applications as molecular sensors, switches, or energy storage devices. Although dinuclear Au (I) complexes with bridging diphosphines have been extensively examined, most of those reported do not contain rigid-diphosphine ligands.

This thesis examines how the rigid diphosphine, 4,6-bis(diphenylphosphino)dibenzofuran (DBFDP) can be incorporated for the controlled assembly of photoluminescent gold (I) metal – chalcogenolate (chalcogenolate = RS-, RSe-; R = organic moiety) and gold (I) chalcogenide (chalcogenide = S2-, Se2-) bimetallic complexes. In these studies, the chalcogen …


Exploring The Reactivity Of Metal-Ligand Cooperative Complexes With Dioxazolones, Terminal Alkynes, And 2-Ethynylbenzyl Alcohol, Megan A. Hoffer Miss Jan 2024

Exploring The Reactivity Of Metal-Ligand Cooperative Complexes With Dioxazolones, Terminal Alkynes, And 2-Ethynylbenzyl Alcohol, Megan A. Hoffer Miss

Electronic Thesis and Dissertation Repository

N-Acyl ketenimines were attempted to be synthesized catalytically by [Ru(Cp)(PPh2NPh2)(NCMe)]PF6 with phenylacetylene and 3-phenethynyl-1,2,4-dioxazol-5-one. Trapping agents were employed to identify the major product of the reaction, as many products were formed. [Ru(Cp)(PPh2NPh2)(NCMe)]PF6 reacts with 3-phenethynyl-1,2,4-dioxazol-5-one generating an isocyanate via the Curtius rearrangement, confirmed by a forced Curtius rearrangement with 3-phenethynyl-1,2,4-dioxazol-5-one and 1,2,4-triazole. Rates of vinylidene formation using [Ru(Cp)(PPh2NPh2)(NCMe)]PF6 and various terminal alkynes of different sterics and electronics were evaluated using a Hammett analysis for and simple rate comparisons. …


Synthesis Of N-Heterocyclic Carbene Complexes Of Coinage Metals And Their Application In The Activation Of Hydrogen, Maryam Akramova Jan 2024

Synthesis Of N-Heterocyclic Carbene Complexes Of Coinage Metals And Their Application In The Activation Of Hydrogen, Maryam Akramova

Honors Projects

The main cause of the ongoing global climate crisis is the emission of greenhouse gases, and current climate reports emphasize the need to transition to low-emission renewable energy sources. Urgently needed are methods for storing renewable energy, such as synthetic fuels like hydrogen (H2) gas; however, a challenge to the widespread implementation of hydrogen fuel is its low volumetric energy density. This thesis describes an effort to synthesize a catalyst that takes advantage of hard-soft acid-base (HSAB) mismatches to activate H2 and facilitate its reaction with CO2 to form hydrocarbon fuels, thereby providing a sustainable means …


Amination Of 2-Bromo-6-Methylaminopyridine, Matthew H. Elterman Jan 2024

Amination Of 2-Bromo-6-Methylaminopyridine, Matthew H. Elterman

Honors College Theses

Extended metal atom chains (EMACs) represent molecular structures comprising a linear arrangement of metal ions, accompanied by supporting ligands. These compounds possess intriguing properties, yet remain understudied, drawing interest from diverse fields such as physics. However, synthesizing these multimetallic complexes poses significant challenges due to their intricate nature and specificity. Bridging ligands like silyl aminopyridine (SAP) and dipyridyl amine (DAP) have been utilized successfully to support EMACs, with SAP's application in this context being limited to a single published case, highlighting the urgent need for stabilization. This project aims to address this challenge through the synthesis of a novel scaffolded …


Activation Of Hydrogen By Sterically Modulated Coinage Metal Catalysts Via Mutual Quenching Of Hard/Soft Acid/Base Mismatches, Zach Leibowitz Jan 2024

Activation Of Hydrogen By Sterically Modulated Coinage Metal Catalysts Via Mutual Quenching Of Hard/Soft Acid/Base Mismatches, Zach Leibowitz

Honors Projects

To mitigate the devastating environmental impacts of climate change in the coming decades, it is imperative that we replace the use of fossil fuels with renewable energy sources such as wind, solar, and hydroelectric. As these renewable energy sources are inherently intermittent, there exists a need for sustainable mechanisms to store renewable energy for later use. While the direct use of dihydrogen (H2) as a combustible fuel would allow for energy storage without the harmful release of carbon dioxide (CO2) upon combustion, the practicality of H2 as a synthetic fuel is limited by its low …


Enhanced Mechanical Strength Of Soybean Oil-Based Non-Isocyanate Polyurethane Adhesive For Wood Application By Introducing Nanofillers, Vatsal Chaudhari Dec 2023

Enhanced Mechanical Strength Of Soybean Oil-Based Non-Isocyanate Polyurethane Adhesive For Wood Application By Introducing Nanofillers, Vatsal Chaudhari

Electronic Theses & Dissertations

Polyurethane (PU) is a versatile material that finds extensive use in various industries including bedding, construction, automotive, and packaging. Historically, this particular polymer relied significantly on petrochemical resources, a practice that was considered to have negative environmental impacts. The conventional method for preparing PU involves the use of isocyanate, which is a disadvantage due to its negative impact on the environment and human health. The resolution of this problem entails identifying an appropriate substitute for petroleum-derived products that minimize their impact on both the environment and human health. The researchers earlier utilized soybean oil, for the formulation of PUs in …


Optimization Of Transition-Metal Inclusive Carbon Aerogels For Electrochemical Energy Applications, Allen Dalton Davis Dec 2023

Optimization Of Transition-Metal Inclusive Carbon Aerogels For Electrochemical Energy Applications, Allen Dalton Davis

Electronic Theses & Dissertations

The ever-growing need for energy alongside rising concerns for climate change demands the development of renewable energy technologies. Hydrogen fuel cells are a promising technology that can serve to either supplement energy generation or act as a lone power source. Yet for these devices to be truly green, the hydrogen that serves as fuel must be procured from a renewable resource. Electrolytic water splitting is a process that allows for the dissociation of water into H2 and O2. For this process to be practical, the electrolyzer needs to demonstrate high efficiency and stability, as well as a …


Exploring Soybean Oil-Based Polyol And Effect Of Non-Halogenated Flame Retardants In Rigid Polyurethane Foam, Sahithi Kondaveeti Dec 2023

Exploring Soybean Oil-Based Polyol And Effect Of Non-Halogenated Flame Retardants In Rigid Polyurethane Foam, Sahithi Kondaveeti

Electronic Theses & Dissertations

To address the increasing demand for sustainable biomaterials due to the depletion of fossil fuel resources and growing environmental concerns, a new type of biodegradable and environmentally friendly rigid polyurethane foam (RPUF) has been synthesized. These foams are derived from chemically modified soybean oil-based polyol obtained from soybean oil by epoxidation followed by a ring-opening reaction. Polyurethane foam is generally used in construction, furniture, and automobile industries but is highly flammable and releases toxic gases and smoke during combustion. In this study, a highly efficient synergistic effect halogen-free flame-retardant (FR) melamine salt, 2-carboxyethyl(phenyl)phosphinic acid melamine salt (CMA) was synthesized from …


Microplate-Like Metal Pyrophosphate Engineered On Ni-Foam Towards Multifunctional Electrode Material For Energy Conversion And Storage, Rishabh Srivastava Dec 2023

Microplate-Like Metal Pyrophosphate Engineered On Ni-Foam Towards Multifunctional Electrode Material For Energy Conversion And Storage, Rishabh Srivastava

Electronic Theses & Dissertations

High clean energy demand, dire need for sustainable development, and low carbon footprints are the few intuitive challenges, leading researchers to aim for research and development for high-performance energy devices. The development of materials used in energy devices is currently focused on enhancing the performance, electronic properties, and durability of devices. Tunning the attributes of transition metals using pyrophosphate (P2O7) ligand moieties can be a promising approach to meet the requirements of energy devices such as water electrolyzers and supercapacitors, although such a material’s configuration is rarely exposed for this purpose of study.

Herein, we grow …


Sterically Encumbering Ligands For The Synthesis And Stabilization Of Iron Nitride And Iron Oxo Compounds, Asiel Mena Dec 2023

Sterically Encumbering Ligands For The Synthesis And Stabilization Of Iron Nitride And Iron Oxo Compounds, Asiel Mena

Open Access Theses & Dissertations

The study of iron-nitrides has been found to be very attractive due to their potential role in processes like Haber-Bosch and nitrogen fixation by nitrogenase. The role of iron-nitrides in these processes is yet not well understood, and the fact that only handful of terminal iron-nitrides have been isolated or spectroscopically detected motivates us to study this type of systems, since much remains to be learned about the electronic and structural factors that affect the chemistry of the Feâ?¡N bond. Recently in our group, by using a super-bulky guanidinate ligand (LAr*), the obtention of an iron-nitride ([LAr*]FeN(py) (LAr* = (Ar*N)2C(NCtBu2), …


Hydrothermal Synthesis Of First-Row Transition Metal Polyanions Towards The Design Of Frustrated Magnetic Materials, Megan Smart Dec 2023

Hydrothermal Synthesis Of First-Row Transition Metal Polyanions Towards The Design Of Frustrated Magnetic Materials, Megan Smart

All Dissertations

Novel modern materials are constantly being discovered as humanity seeks constantly better improvement to the optics and electronics around us, from lasers used in medical therapies to the magnets and supercomputing chips in our phones. Inorganic oxides commonly draw inspiration from naturally occurring minerals to template new discoveries through substitution of similarly behaving elements with the goal of inducing certain desired properties, such as ferroelectricity or creating the elusive quantum spin liquid. While many minerals are silicates, its periodic table neighbor germanium(IV) has a rich and under-explored crystal chemistry that could contain many new structures and magnetic materials. Another common …


Perovskite Oxide Derivatives For Enhanced Electrochemical Water Splitting And Pseudocapacitor Applications., Md. Sofiul Alom Dec 2023

Perovskite Oxide Derivatives For Enhanced Electrochemical Water Splitting And Pseudocapacitor Applications., Md. Sofiul Alom

Electronic Theses and Dissertations

The global energy landscape is at a crossroads, marked by surging demand, finite fossil fuel reserves, and escalating environmental concerns stemming from carbon emissions. To address these challenges and transition towards a sustainable energy future, this dissertation embarks on a multidisciplinary exploration of perovskite oxides and their derivatives as catalysts and materials for advanced electrochemical water splitting and pseudocapacitive energy storage. In the quest for efficient water splitting catalysts, a series of quasi-2D oxides, SrLaAl1/2M1/2O4 (M = Mn, Fe, Co), was synthesized and systematically studied where the B-site comprised of both transition metals and main …


Scalable Solution Processing Of Niox Nanoparticles., Peter James Armstrong Dec 2023

Scalable Solution Processing Of Niox Nanoparticles., Peter James Armstrong

Electronic Theses and Dissertations

Perovskite solar cells (PSCs) are a promising alternative to silicon-based photovoltaics. However, PSCs face several challenges due to shortcomings in their stability, module efficiency, and scaled production. Although PSCs is still a young field of research, significant attention has been given to demonstrating power conversion efficiencies that are on par with traditional silicon. With that target reached, converting the laboratory demonstration into practical materials to increase access and abundance of solar energy are among the next large targets for the field. This comes with material challenges for perovskite and their companion charge transport layers (CTLs). Among the charge transport materials …


The Room Temperature Electrolysis Of F-Elements In Aqueous And Ionic Liquid Media: Synthesis, Dissolution, And Reduction, Phillip George Hammer Dec 2023

The Room Temperature Electrolysis Of F-Elements In Aqueous And Ionic Liquid Media: Synthesis, Dissolution, And Reduction, Phillip George Hammer

UNLV Theses, Dissertations, Professional Papers, and Capstones

Procuring F-element metals is no simple task and often requires the use of caustic and hazardous materials at high temperatures. These materials are invaluable for a variety of scientific missions ranging from the elucidation of fundamental properties, as fast spectrum nuclear fuel forms, to pit production modernizing our nuclear stockpiles. Metallic actinide materials are essential to strategic and critical materials recovery, the nuclear energy sector, and weapons production. Room temperature electrolysis is envisioned as a process to recover laboratory scale (milligram to gram) quantities of actinide metals. This process closes the uranium chemical loop allowing the reclamation of materials for …


Improved Stoichiometric Synthesis Of Ccc-Nhc Pincer Rh Complexes And Catalytic Activity Towards Dehydrogenative Silylation And Hydrosilylation Of Alkenes, Enock Amoateng Aug 2023

Improved Stoichiometric Synthesis Of Ccc-Nhc Pincer Rh Complexes And Catalytic Activity Towards Dehydrogenative Silylation And Hydrosilylation Of Alkenes, Enock Amoateng

Theses and Dissertations

N-Heterocyclic carbenes (NHCs) have attracted growing interest not only as successful ancillary ligands in a wide variety of transition-metal-catalyzed reactions but have also shown to offer photophysical and electrochemical properties. The metalation/transmetalation strategy using [Zr(NMe2)4] as initial metalating reagent offers an efficient approach to the preparation of CCC-NHC pincer complexes of the late transition metals such as Rh and Ir. In the process of investigating an intermediate and the mechanism of the metalation/transmetalation to Rh sequence, a mixed valent bimetallic CCC-NHC pincer Rh complex with two chloro ligands bridged between a [(CCC-NHC)Rh(III)] and a [Rh(I)(COD)] fragment …


Comprehensive Studies Of Magnetic Properties Of Metal-Organic Frameworks And Molecular Compounds, Pagnareach Tin Aug 2023

Comprehensive Studies Of Magnetic Properties Of Metal-Organic Frameworks And Molecular Compounds, Pagnareach Tin

Doctoral Dissertations

Single-ion magnets (SIMs) are at the forefront of molecular electronic spin magnets with potential applications in magnetic memory storage devices. However, the magnetic properties of the SIMs are yet to be completely understood, especially the magnetic properties of large anisotropy systems. A part of this dissertation is to utilize optical and neutron spectroscopies such as far-IR magneto-spectroscopy (FIRMS) and inelastic neutron scattering (INS) to quantify the anisotropy and study the phonon properties of the SIMs as two-dimensional (2-D) metal-organic frameworks (MOFs) or coordination polymer (CP), and a molecular magnet. In addition, ab initio calculations are used to understand the origin …


Redox-Active Polymerization Catalysts And Their Applications, Nicholas M. Shawver Aug 2023

Redox-Active Polymerization Catalysts And Their Applications, Nicholas M. Shawver

Masters Theses

Traditional catalyst systems are reliable means to produce polymers with well-defined architectures and thermomechanical properties; however, they are often limited by a narrow monomer scope and their ability access few, if any, advanced polymer architectures. To address this limitation, a new class of catalysts have recently emerged that feature redox-active moieties that may access advanced architectures through catalyst electronic modulation that arises from redox events occurring on the ligand scaffold or at the active metal center itself. For example, researchers have explored the ability of redox-active catalysts to impart “on-off” kinetic control during ring-opening polymerizations and their ability to access …


Leveraging Non-Covalent Interactions Between Small Organic Molecules And Inorganic Scaffolds In The Design Of Advanced Materials, Jonathan Lefton Jul 2023

Leveraging Non-Covalent Interactions Between Small Organic Molecules And Inorganic Scaffolds In The Design Of Advanced Materials, Jonathan Lefton

Chemistry Theses and Dissertations

Powder diffraction is a powerful tool for studying crystal structures, especially as it relates to interactions of small organic molecules with inorganic compounds. The first part of this dissertation involves small organic ligands interacting with metal-organic framework, MOF-74. The first and simplest iteration involves the crystal structure solution of a neat, liquid loading of n-propylmercaptan to the open metal sites within the MOF-74 pores. Later studies investigate the leveraging of a similarly sized bitopic ligand in the solution loading of 1,2-ethanedithiol, which results in the amorphization of MOF-74. Having no crystallinity, amorphous or severely defected materials can be a …


Rhodium-Catalyzed Asymmetric Synthesis Of P-P And P-C Bonds, Sarah T. Chachula Jul 2023

Rhodium-Catalyzed Asymmetric Synthesis Of P-P And P-C Bonds, Sarah T. Chachula

Dartmouth College Ph.D Dissertations

Chapter 1: Synthesis, Structure, Dynamics, and Enantioface-Selective η3-Benzyl Coordination in the Chiral Rhodium Complexes Rh(diphos*)(η3-CH2Ph) Abstract: The rhodium benzyl complexes Rh(diphos*)(η3-CH2Ph) (1-14, diphos* = chiral bis(phosphine)) were prepared either by treatment of Rh(COD)(η3-CH2Ph) (15, COD = 1,5-cyclooctadiene) with diphos*, or from the reaction of [Rh(diphos*)(Cl)]2 (16- 20) with PhCH2MgCl. For C2-symmetric diphos*, observation of one set of NMR signals for complexes 1-12 suggested that the two diastereomers in which different 3-benzyl enantiofaces were coordinated to rhodium interconverted rapidly on the NMR time scale via suprafacial shifts; observation of five inequivalent aryl 1H NMR signals showed that antarafacial shifts were slow …


From Waste To Energy: The Electrochemical Reduction Of Co2 Using Recycled Nanostructured Catalysts, Ibrahim Badawy Jul 2023

From Waste To Energy: The Electrochemical Reduction Of Co2 Using Recycled Nanostructured Catalysts, Ibrahim Badawy

Theses and Dissertations

The reduction of carbon dioxide (CO2RR) using electrochemistry is a promising solution for the burgeoning global energy crisis. The overall vision of its implementation relies on renewable energy sources to power the reaction creating carbon neutral products and effectively closing the carbon cycle. Research in this field has come a long way since its inception in the mid-1900s. However, there remain significant hurdles and important considerations to overcome in order to reach full commercialization. Most electrocatalysts tested for CO2RR have been designed solely for maximum performance while ignoring the environmental consequences if such a material were …


Methods Of Magneto-Optical Spectroscopy And Analysis For Porphyrins And Polymer Thin-Films, Emigdio E. Turner Jun 2023

Methods Of Magneto-Optical Spectroscopy And Analysis For Porphyrins And Polymer Thin-Films, Emigdio E. Turner

Chemistry and Chemical Biology ETDs

This dissertation describes the construction of two high precision magneto-polarimeters for performing Faraday rotation and Magnetic Circular Dichroism (MCD) measurements of polymer thin-films. There is a focus in materials science on the development of thin-film magneto-optically active materials. These materials could allow for the construction of a thin-film optical diode, an important device for next-generation photonic technology. Upon completion of the Faraday rotation spectrometer, two publications were generated from Faraday rotation measurements of novel polymer thin-film materials.

With growing interest by materials scientists in magneto-optically active transition-metal containing materials, an MCD spectrometer was constructed to study these materials. This spectrometer …


Sers For The Detection Of Trace Materials, Omari Kirkland Jun 2023

Sers For The Detection Of Trace Materials, Omari Kirkland

Dissertations, Theses, and Capstone Projects

In this dissertation are presented three projects that contribute to the body of research on SERS in the forensic, heritage, and semiconductor fields. The first project, Charge-Transfer mapping on GaN/Ag, a silver-decorated nanopillar semiconductor substrate fabricated from the GaN is used with the Raman probe Rhodamine 6 G (R6G) to map the effect of the nanofeatures on the CT resonance. The second project, in collaboration with Marco Leona from the Metropolitan Museum of Art, explores the use of AgNIFs to identify colorants used on textile fiber samples from four 19th century works of Japanese art. The final project analyzes the …