Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Hydrology

Series

Civil and Environmental Engineering Faculty Publications and Presentations

Keyword
Publication Year

Articles 1 - 30 of 57

Full-Text Articles in Physical Sciences and Mathematics

Altimetry For The Future: Building On 25 Years Of Progress, Saleh Abdalla, Abdolnabi Kolahchi, Micheal Ablain, Susheel Adusumilli, Suchandra Aich Bhowmick, Eva Alou-Font, Laiba Amarouche, Ole Baltazar Andersen, Edward Zaron, Multiple Additional Authors Mar 2021

Altimetry For The Future: Building On 25 Years Of Progress, Saleh Abdalla, Abdolnabi Kolahchi, Micheal Ablain, Susheel Adusumilli, Suchandra Aich Bhowmick, Eva Alou-Font, Laiba Amarouche, Ole Baltazar Andersen, Edward Zaron, Multiple Additional Authors

Civil and Environmental Engineering Faculty Publications and Presentations

In 2018 we celebrated 25 years of development of radar altimetry, and the progress achieved by this methodology in the fields of global and coastal oceanography, hydrology, geodesy and cryospheric sciences. Many symbolic major events have celebrated these developments, e.g., in Venice, Italy, the 15th (2006) and 20th (2012) years of progress and more recently, in 2018, in Ponta Delgada, Portugal, 25 Years of Progress in Radar Altimetry. On this latter occasion it was decided to collect contributions of scientists, engineers and managers involved in the worldwide altimetry community to depict the state of altimetry and propose recommendations for the …


Remote Sensing Of Water Use Efficiency And Terrestrial Drought Recovery Across The Contiguous United States, Behzad Ahmadi, Ali Ahmadalipour, Glenn Tootle Mar 2019

Remote Sensing Of Water Use Efficiency And Terrestrial Drought Recovery Across The Contiguous United States, Behzad Ahmadi, Ali Ahmadalipour, Glenn Tootle

Civil and Environmental Engineering Faculty Publications and Presentations

Ecosystem water-use efficiency (WUE) is defined as the ratio of carbon gain (i.e., gross primary productivity; GPP) to water consumption (i.e., evapotranspiration; ET). WUE is markedly influential on carbon and water cycles, both of which are fundamental for ecosystem state, climate and the environment. Drought can affect WUE, subsequently disturbing the composition and functionality of terrestrial ecosystems. In this study, the impacts of drought on WUE and its components (i.e., GPP and ET) are assessed across the Contiguous US (CONUS) at fine spatial and temporal resolutions. Soil moisture simulations from land surface modeling are utilized to detect and characterize agricultural …


Mechanics And Historical Evolution Of Sea Level Blowouts In New York Harbor, Praneeth Gurumurthy, Philip Orton, Stefan A. Talke, Nickitas Georgas, James F. Booth Jan 2019

Mechanics And Historical Evolution Of Sea Level Blowouts In New York Harbor, Praneeth Gurumurthy, Philip Orton, Stefan A. Talke, Nickitas Georgas, James F. Booth

Civil and Environmental Engineering Faculty Publications and Presentations

Wind-induced sea level blowouts, measured as negative storm surge or extreme low water (ELW), produce public safety hazards and impose economic costs (e.g., to shipping). In this paper, we use a regional hydrodynamic numerical model to test the effect of historical environmental change and the time scale, direction, and magnitude of wind forcing on negative and positive surge events in the New York Harbor (NYH). Environmental sensitivity experiments show that dredging of shipping channels is an important factor affecting blowouts while changing ice cover and removal of other roughness elements are unimportant in NYH. Continuously measured water level records since …


Effects Of Water Level Fluctuation On Thermal Stratification In A Typical Tributary Bay Of Three Gorges Reservoir, China, Juxiang Jin, Scott Wells, Defu Liu, Guolu Yang, Senlin Zhu, Jun Ma, Zhengjian Yang Jan 2019

Effects Of Water Level Fluctuation On Thermal Stratification In A Typical Tributary Bay Of Three Gorges Reservoir, China, Juxiang Jin, Scott Wells, Defu Liu, Guolu Yang, Senlin Zhu, Jun Ma, Zhengjian Yang

Civil and Environmental Engineering Faculty Publications and Presentations

Xiangxi River is a typical tributary of Three Gorges Reservoir (TGR) in China. Based on field observations in 2010, thermal stratification was significant in most months of the year. Through field data analysis and numerical simulations, the seasonal and spatial variation of thermal stratification as related to the impact of the operation of TGR were investigated. Thermal stratification was most pronounced from April to September in the Xiangxi River tributary. Air temperature (AT) and water level (WL) were the two dominant variables impacting thermal stratification. AT affected the surface water temperature promoting the formation of thermal stratification, and high WLs …


Bigger Tides, Less Flooding: Effects Of Dredging On Barotropic Dynamics In A Highly Modified Estuary, David K. Ralston, Stefan Talke, W. Rockwell Geyer, Hussein A. M. Al-Zubaidi, Christopher K. Sommerfield Jan 2019

Bigger Tides, Less Flooding: Effects Of Dredging On Barotropic Dynamics In A Highly Modified Estuary, David K. Ralston, Stefan Talke, W. Rockwell Geyer, Hussein A. M. Al-Zubaidi, Christopher K. Sommerfield

Civil and Environmental Engineering Faculty Publications and Presentations

Since the late nineteenth century, channel depths have more than doubled in parts of New York Harbor and the tidal Hudson River, wetlands have been reclaimed and navigational channels widened, and river flow has been regulated. To quantify the effects of these modifications, observations and numerical simulations using historical and modern bathymetry are used to analyze changes in the barotropic dynamics. Model results and water level records for Albany (1868 to present) and New York Harbor (1844 to present) recovered from archives show that the tidal amplitude has more than doubled near the head of tides, whereas increases in the …


A Bayesian Hierarchical Approach To Multivariate Nonstationary Hydrologic Frequency Analysis, C. Bracken, K. D. Holman, B. Rajagopalan, Hamid Moradkhani Jan 2018

A Bayesian Hierarchical Approach To Multivariate Nonstationary Hydrologic Frequency Analysis, C. Bracken, K. D. Holman, B. Rajagopalan, Hamid Moradkhani

Civil and Environmental Engineering Faculty Publications and Presentations

We present a general Bayesian hierarchical framework for conducting nonstationary frequency analysis of multiple hydrologic variables. In this, annual maxima from each variable are assumed to follow a generalized extreme value (GEV) distribution in which the location parameter is allowed to vary in time. A Gaussian elliptical copula is used to model the joint distribution of all variables. We demonstrate the utility of this framework with a joint frequency analysis model of annual peak snow water equivalent (SWE), annual peak flow, and annual peak reservoir elevation at Taylor Park dam in Colorado, USA. Indices of largescale climate drivers—El Ni~no Southern …


Time Varying Parameter Models For Catchments With Land Use Change: The Importance Of Model Structure, Sahani Pathiraja, Daniela Anghileri, Paolo Burlando, Ashish Sharma, Lucy Marshall, Hamid Moradkhani Jul 2017

Time Varying Parameter Models For Catchments With Land Use Change: The Importance Of Model Structure, Sahani Pathiraja, Daniela Anghileri, Paolo Burlando, Ashish Sharma, Lucy Marshall, Hamid Moradkhani

Civil and Environmental Engineering Faculty Publications and Presentations

Rapid population and economic growth in South-East-Asia has been accompanied by extensive land use change with consequent impacts on catchment hydrology. Modelling methodologies capable of handling changing land use conditions are therefore becoming ever more important, and are receiving increasing attention from hydrologists. A recently developed Data Assimilation based framework that allows model parameters to vary through time in response to signals of change in observations is considered for a medium sized catchment (2880 km²) in Northern Vietnam experiencing substantial but gradual land cover change. We investigate the efficacy of the method as well as the importance of the chosen …


Tidal-Fluvial And Estuarine Processes In The Lower Columbia River: Ii. Water Level Models, Floodplain Wetland Inundation, And System Zones, David A. Jay, Amy B. Borde, Heida Diefenderfer Sep 2016

Tidal-Fluvial And Estuarine Processes In The Lower Columbia River: Ii. Water Level Models, Floodplain Wetland Inundation, And System Zones, David A. Jay, Amy B. Borde, Heida Diefenderfer

Civil and Environmental Engineering Faculty Publications and Presentations

Spatially varying water-level regimes are a factor controlling estuarine and tidal-fluvial wetland vegetation patterns. As described in Part I, water levels in the Lower Columbia River and estuary (LCRE) are influenced by tides, river flow, hydropower operations, and coastal processes. In Part II, regression models based on tidal theory are used to quantify the role of these processes in determining water levels in the mainstem river and floodplain wetlands, and to provide 21-year inundation hindcasts. Analyses are conducted at 19 LCRE mainstem channel stations and 23 tidally exposed floodplain wetland stations. Sum exceedance values (SEVs) are used to compare wetland …


Exploring, Exploiting And Evolving Diversity Of Aquatic Ecosystem Models: A Community Perspective, Annette B.G. Janssen, George B. Arhonditsis, Arthur Beusen, Karsten Bolding, Louise Bruce, Jorn Bruggeman, Raoul-Marie Couture, Andrea S. Downing, J. Alex Elliott, Marieke A. Frassl, Gideon Gal, Daan J. Gerla, Matthew R. Hipsey, Fenjuan Hu, Stephen C. Ives, Jan H. Janse, Erik Jeppesen, Klaus D. Jöhnk, David Kneis, Xiangzhen Kong, Jan J. Kuiper, Moritz K. Lehmann, Carsten Lemmen, Deniz Özkundakci, Thomas Petzoldt, Karsten Rinke, Barbara J. Robson, René Sachse, Sebastiaan A. Schep, Martin Schmid, Huub Scholten, Sven Teurlincx, Dennis Trolle, Tineke A. Troost, Anne A. Van Dam, Luuk P.A. Van Gerven, Mariska Weijerman, Scott A. Wells, Wolf M. Mooij Dec 2015

Exploring, Exploiting And Evolving Diversity Of Aquatic Ecosystem Models: A Community Perspective, Annette B.G. Janssen, George B. Arhonditsis, Arthur Beusen, Karsten Bolding, Louise Bruce, Jorn Bruggeman, Raoul-Marie Couture, Andrea S. Downing, J. Alex Elliott, Marieke A. Frassl, Gideon Gal, Daan J. Gerla, Matthew R. Hipsey, Fenjuan Hu, Stephen C. Ives, Jan H. Janse, Erik Jeppesen, Klaus D. Jöhnk, David Kneis, Xiangzhen Kong, Jan J. Kuiper, Moritz K. Lehmann, Carsten Lemmen, Deniz Özkundakci, Thomas Petzoldt, Karsten Rinke, Barbara J. Robson, René Sachse, Sebastiaan A. Schep, Martin Schmid, Huub Scholten, Sven Teurlincx, Dennis Trolle, Tineke A. Troost, Anne A. Van Dam, Luuk P.A. Van Gerven, Mariska Weijerman, Scott A. Wells, Wolf M. Mooij

Civil and Environmental Engineering Faculty Publications and Presentations

Here, we present a community perspective on how to explore, exploit and evolve the diversity in aquatic ecosystem models. These models play an important role in understanding the functioning of aquatic ecosystems, filling in observation gaps and developing effective strategies for water quality management. In this spirit, numerous models have been developed since the 1970s. We set off to explore model diversity by making an inventory among 42 aquatic ecosystem modellers, by categorizing the resulting set of models and by analysing them for diversity. We then focus on how to exploit model diversity by comparing and combining different aspects of …


Ensemble Prediction And Data Assimilation For Operational Hydrology, Dong-Jun Seo, Yuqiong Liu, Hamid Moradkhani, Albrecht Weerts Dec 2014

Ensemble Prediction And Data Assimilation For Operational Hydrology, Dong-Jun Seo, Yuqiong Liu, Hamid Moradkhani, Albrecht Weerts

Civil and Environmental Engineering Faculty Publications and Presentations

This special section in the Journal of Hydrology will discuss the need for advancing hydrologic ensemble prediction and DA.


Toward A Reliable Prediction Of Seasonal Forecast Uncertainty: Addressing Model And Initial Condition Uncertainty With Ensemble Data Assimilation And Sequential Bayesian Combination, Caleb Matthew Dechant, Hamid Moradkhani Jun 2014

Toward A Reliable Prediction Of Seasonal Forecast Uncertainty: Addressing Model And Initial Condition Uncertainty With Ensemble Data Assimilation And Sequential Bayesian Combination, Caleb Matthew Dechant, Hamid Moradkhani

Civil and Environmental Engineering Faculty Publications and Presentations

Uncertainties are an unfortunate yet inevitable part of any forecasting system. Within the context of seasonal hydrologic predictions, these uncertainties can be attributed to three causes: imperfect characterization of initial conditions, an incomplete knowledge of future climate and errors within computational models. This study proposes a method to account for all threes sources of uncertainty, providing a framework to reduce uncertainty and accurately convey persistent predictive uncertainty. In currently available forecast products, only a partial accounting of uncertainty is performed, with the focus primarily on meteorological forcing. For example, the Ensemble Streamflow Prediction (ESP) technique uses meteorological climatology to estimate …


Ce-Qual-W2 Model And Model Set-Up, Scott A. Wells Nov 2013

Ce-Qual-W2 Model And Model Set-Up, Scott A. Wells

Civil and Environmental Engineering Faculty Publications and Presentations

Conference presentation that provides background information on the CE-QUAL-W2 water modeling software, with examples of its use and instructions on set-up and application.


A Novel Approach To Flow Estimation In Tidal Rivers, Hamed Moftakhari Rostamkhani, David A. Jay, Stefan A. Talke, Tobias Kukulka, Peter D. Bromirski Aug 2013

A Novel Approach To Flow Estimation In Tidal Rivers, Hamed Moftakhari Rostamkhani, David A. Jay, Stefan A. Talke, Tobias Kukulka, Peter D. Bromirski

Civil and Environmental Engineering Faculty Publications and Presentations

Reliable estimation of river discharge to the ocean from large tidal rivers is vital for water resources management and climate analyses. Due to the difficulties inherent in measuring tidal-river discharge, flow records are often limited in length and/or quality and tidal records often predate discharge records. Tidal theory indicates that tides and river discharge interact through quadratic bed friction, which diminishes and distorts the tidal wave as discharge increases. We use this phenomenon to develop a method of estimating river discharge for time periods with tidal data but no flow record. Employing sequential 32 day harmonic analyses of tidal properties, …


Amaila Falls Hydroelectric Project Model Development And Scenarios, Chris Berger, Scott A. Wells, Vanessa Wells Dec 2010

Amaila Falls Hydroelectric Project Model Development And Scenarios, Chris Berger, Scott A. Wells, Vanessa Wells

Civil and Environmental Engineering Faculty Publications and Presentations

The focus of this present study is to perform the following tasks:

* Develop a hydrodynamic and water quality model of the reservoir formed by the Amaila Falls Hydroelectric Project

* Develop and run modeling scenarios

Water quality model simulations of the 23.3 km2 reservoir for Amaila Falls Hydroelectric Project were conducted for low, average, and high flow years. A scenario with no vegetation removed from the reservoir for an average flow was also simulated. Conditions downstream of the reservoir were also modeled using a river model.

The model used for the reservoir formed by Amaila Falls Hydroelectric Project …


Spokane River In Idaho And Washington Tmdl Water Quality And Hydrodynamic Modeling Quality Assurance Project Plan -- Draft, Scott A. Wells, Chris Berger Feb 2009

Spokane River In Idaho And Washington Tmdl Water Quality And Hydrodynamic Modeling Quality Assurance Project Plan -- Draft, Scott A. Wells, Chris Berger

Civil and Environmental Engineering Faculty Publications and Presentations

The focus of this present study is to perform the following tasks:

• Converting the Upper Spokane River CE‐QUAL‐W2 models (Washington and Idaho) to version 3.6

• Combining the Washington and Idaho models

• Reviewing and updating model boundary conditions

• Check model calibration

• Meet with stakeholders

• Develop and Run Modeling Scenarios

• Create reports on calibration and scenario runs


Pend Oreille River Model: Model Scenario Simulations, Robert Leslie Annear, Chris Berger, Scott A. Wells Oct 2007

Pend Oreille River Model: Model Scenario Simulations, Robert Leslie Annear, Chris Berger, Scott A. Wells

Civil and Environmental Engineering Faculty Publications and Presentations

The Idaho Department of Environmental Quality is interested in developing a temperature and water quality Total Maximum Daily Load (TMDL) allocation for the Pend Oreille River between the Long Bridge near the historical Lake Pend Oreille outlet and Albeni Falls Dam (U.S. Army Corps of Engineer’s reservoir) as shown in Figure 1.

This management scenario report is an update of a prior report. The management scenarios had to be rerun because of a modeling error made with the outflows rate of Albeni Falls Dam. The new calibration error statistics were compared with the old statistics in Appendix B: Model Calibration …


Pend Oreille River, Box Canyon Model: Model Scenario Simulations, Chris Berger, Robert Leslie Annear, Scott A. Wells Jul 2007

Pend Oreille River, Box Canyon Model: Model Scenario Simulations, Chris Berger, Robert Leslie Annear, Scott A. Wells

Civil and Environmental Engineering Faculty Publications and Presentations

The Washington Department of Ecology is interested in developing a temperature Total Maximum Daily Load (TMDL) allocation for the Pend Oreille River between the Albeni Falls Dam (U.S. Army Corps of Engineer’s reservoir) and Box Canyon Dam as shown in Figure 1. The Pend Oreille drainage basin is shown in Figure 2. An existing model of the Box Canyon reach was updated from CE-QUALW2 Version 3.0 to Version 3.5. This current research involves improving the calibration of the original model (1997 and 1998) and expanding the model using 2004 as an additional data set for calibration.

The use of field …


Modeling Effects Of Channel Complexity And Hyporheic Flow On Stream Temperatures, Chris Berger, Scott A. Wells Jun 2007

Modeling Effects Of Channel Complexity And Hyporheic Flow On Stream Temperatures, Chris Berger, Scott A. Wells

Civil and Environmental Engineering Faculty Publications and Presentations

Stream temperatures are affected by multiple forcing functions, including surface heat exchange (including solar radiation, evaporation, conduction, and net long wave radiation) and hyporheic flows. Each of these forcing functions is directly influenced by the level of channel complexity in the stream channel and riparian shading. The interrelationship between channel complexity, hyporheic flow and stream temperature is highly complex, and efforts to manage for habitat diversity by managing channel complexity could result in unintended consequences on stream temperature. When planning modifications to stream channel complexity, consideration should be given to the effects such moderations could have on stream temperatures.

Urbanization …


Idaho Pend Oreille River Model: Model Development And Calibration, Robert Leslie Annear, Chris Berger, Scott A. Wells Nov 2006

Idaho Pend Oreille River Model: Model Development And Calibration, Robert Leslie Annear, Chris Berger, Scott A. Wells

Civil and Environmental Engineering Faculty Publications and Presentations

The objectives of this project were to:

• Develop a hydrodynamic and temperature model of Pend Oreille River using CE-QUAL-W2 Version 3.2

• Calibrate the CE-QUAL-W2 model to field data collected during 2004 and 2005 using the following water quality variables:

  • flow, water surface elevation, and velocity
  • temperature o dissolved oxygen
  • nutrients (NO3-N+NO2-N, NH4-N, PO4-P)
  • algae – chlorophyll a
  • BOD5 and dissolved organic matter and particulate organic matter compartments (both labile and refractory) for the organic matter cycling with algae
  • periphyton

The model chosen for development was CE-QUAL-W2 Version 3.2 (Cole and Wells, 2004). This is a two-dimensional unsteady hydrodynamic …


Pend Oreille River, Box Canyon Model: Model Development And Calibration, Robert Leslie Annear, Chris Berger, Scott A. Wells Nov 2006

Pend Oreille River, Box Canyon Model: Model Development And Calibration, Robert Leslie Annear, Chris Berger, Scott A. Wells

Civil and Environmental Engineering Faculty Publications and Presentations

The purpose of this study was to improve the existing Version 3.0 application of CE-QUAL-W2 of the Pend Oreille River between Box Canyon Dam and Albeni Falls Dam by performing the tasks outlined above. In addition, the use of field data from 2004 as an additional calibration year would improve the confidence in the model’s predictive ability for temperature. The model simulations were run from January 1st to December 31st in each of the 3 years of model simulation: 1997, 1998 and 2004.

The model chosen for development is CE-QUAL-W2 Version 3.5 (Cole and Wells, 2006). This is a twodimensional …


Ce-Qual-W2: A Two-Dimensional, Laterally Averaged, Hydrodynamic And Water Quality Model, Version 3.5, Thomas M. Cole, Scott A. Wells Jan 2006

Ce-Qual-W2: A Two-Dimensional, Laterally Averaged, Hydrodynamic And Water Quality Model, Version 3.5, Thomas M. Cole, Scott A. Wells

Civil and Environmental Engineering Faculty Publications and Presentations

This manual documents the two-dimensional, laterally averaged, hydrodynamic and water quality model CE-QUAL-W2. This manual was prepared in the Environmental Laboratory (EL), us Army Engineer Waterways Experiment Station (WES), Vicksburg, MS. Bonita Niel and Dr. William Roper, CERD-C provided funding for Version 3.1 of the manual under the Numerical Model Maintenance Program. The principal investigator for Version 3.2 of CE-QUAL-W2 and the User Manual was Mr. Thomas M. Cole of the Water Quality and Contaminant Modeling Branch (WQCMB), Environmental Processes and Effects Division (EPED), EL. This report supersedes the Version 3.2 manual. Revisions made in this V3.5 manual were made …


Lake Whatcom Water Quality Model, Chris Berger Jul 2005

Lake Whatcom Water Quality Model, Chris Berger

Civil and Environmental Engineering Faculty Publications and Presentations

A water quality model of Lake Whatcom, Washington was developed as part of a Total Maximum Daily Load Study for the Washington Department of Ecology. Lake Whatcom is a large natural lake which is listed on the 1998 Washington State 303(d) list of waterbodies which do not meet the criterion for dissolved oxygen. Located next to the city of Bellingham, it is approximately 10 miles long and has a surface area of approximately 5000 acres and a maximum depth of over 100 meters. Eutrophication processes in the lake have been accelerated in recent years perhaps by the availability of nutrients …


Upper Spokane River Model In Idaho: Boundary Conditions And Model Setup And Calibration For 2001 And 2004, Robert Leslie Annear, Scott A. Wells, Chris Berger Jul 2005

Upper Spokane River Model In Idaho: Boundary Conditions And Model Setup And Calibration For 2001 And 2004, Robert Leslie Annear, Scott A. Wells, Chris Berger

Civil and Environmental Engineering Faculty Publications and Presentations

As a result of a Total Maximum Daily Load (TMDL) study of the Spokane River in Washington, a hydrodynamic and water quality model for the Spokane River was developed by Portland State University (PSU) for the Corps of Engineers and the Washington Department of Ecology from the Washington-Idaho state line to the outlet of Long Lake.

An earlier study of the Spokane River was undertaken by Limno-Tech (2001a, 2001b) for the domain shown in Figure 3. Limno-Tech used an earlier version of CE-QUAL-W2, Version 2, for the Reservoir portion of the Spokane River from Post Falls Dam to Coeur d’Alene …


Laurance Lake Temperature Model, Chris Berger, Scott A. Wells, Robert Leslie Annear Jun 2005

Laurance Lake Temperature Model, Chris Berger, Scott A. Wells, Robert Leslie Annear

Civil and Environmental Engineering Faculty Publications and Presentations

Laurance Lake is a reservoir located in Hood River County, Oregon (Figure 1). It is located at the base on Mt. Hood in Oregon (see Figure 2 and Figure 3), discharges into the Middle Fork of the Hood River. The reservoir was constructed in 1968 for irrigation storage and has a capacity 3564 acre- feet at full pool. Since the river vio lates temperature standards, this study has been designed to construct a hydrodynamic and temperature model of Laurance reservoir in order to assess strategies for improving temperatures in the Middle Fork River.

The objectives of the study are then …


Willamette River Basin Temperature Tmdl Model: Model Calibration, Chris Berger, Michael Lee Mckillip, Robert Leslie Annear, Sher Jamal Khan, Scott A. Wells Aug 2004

Willamette River Basin Temperature Tmdl Model: Model Calibration, Chris Berger, Michael Lee Mckillip, Robert Leslie Annear, Sher Jamal Khan, Scott A. Wells

Civil and Environmental Engineering Faculty Publications and Presentations

The State of Oregon Department of Environmental Quality (DEQ) is developing a TMDL for temperature in the Willamette River basin shown in Figure 1. The study area included the Willamette River and all major tributaries (except the Tualatin River where a TMDL process was already concluded). A large section of the Columbia River was also modeled to provide adequate boundary representation of tidal flows in the lower Willamette River. The Willamette River below the Oregon City Falls in the Portland metropolitan area has a typical diurnal tidal range of 1 m. The development of a dynamic model of temperature and …


Green River Ce-Qual-W2 Project: A Hydrodynamic And Water Quality Study Of The Green River King County, Washington, Tim Kraft, Robert Leslie Annear, Chris Berger, Scott A. Wells Jul 2004

Green River Ce-Qual-W2 Project: A Hydrodynamic And Water Quality Study Of The Green River King County, Washington, Tim Kraft, Robert Leslie Annear, Chris Berger, Scott A. Wells

Civil and Environmental Engineering Faculty Publications and Presentations

This report describes the data processing and model calibration performed for a hydrodynamic and water quality model of the Green River, located in King County, Washington. Figure 1 shows the location of the river, and the limits of the section of river that was modeled.

The Green River flows from its headwaters in the Cascade Mountain foothills through the King County, Washington communities of Auburn, Kent, and Tukwila before discharging into the Duwamish River. Two sections of the river were modeled in this project. The Middle Green River begins in the Cascade Mountain foothills east of Tacoma, and continues downstream …


Waldo Lake Research In 2003, Mark D. Sytsma, John Rueter, Richard Petersen, Roy Koch, Scott A. Wells, Rich Miller, Laura Johnson, Robert Leslie Annear May 2004

Waldo Lake Research In 2003, Mark D. Sytsma, John Rueter, Richard Petersen, Roy Koch, Scott A. Wells, Rich Miller, Laura Johnson, Robert Leslie Annear

Civil and Environmental Engineering Faculty Publications and Presentations

This report summarizes the first year of an effort to develop a more complete understanding of the physical, chemical, and biological characteristics that drive the ecological processes of Waldo Lake. Modern limnology recognizes the importance of watershed processes as well as in- lake processes in lake ecosystem functioning. Therefore, the approach included consideration of watershed hydrology and forcing functions that determine hydrodynamics of the system as well physical and chemical factors that may be important in regulating primary production in the lake. Data collected since 1998 was summarized and bathymetry of the basin was mapped using state-of-the-art digital depth sounding …


Willamette River Basin Temperature Tmdl Model: Model Scenarios, Robert Leslie Annear, Michael Lee Mckillip, Sher Jamal Khan, Chris Berger, Scott A. Wells Apr 2004

Willamette River Basin Temperature Tmdl Model: Model Scenarios, Robert Leslie Annear, Michael Lee Mckillip, Sher Jamal Khan, Chris Berger, Scott A. Wells

Civil and Environmental Engineering Faculty Publications and Presentations

The State of Oregon Department of Environmental Quality (DEQ) is developing a TMDL for temperature in the Willamette River basin shown in Figure 1. The study area included the Willamette River and all major tributaries (except the Tualatin River where a TMDL process was already concluded). A large section of the Columbia River was also modeled to provide adequate boundary representation of tidal flows in the lower Willamette River. The Willamette River below the Oregon City Falls in the Portland metropolitan area has a typical diurnal tidal range of 1 m. The development of a dynamic model of temperature and …


Willamette River Basin Temperature Tmdl Model: Boundary Conditions And Model Setup, Robert Leslie Annear, Michael Lee Mckillip, Sher Jamal Khan, Chris Berger, Scott A. Wells Jan 2004

Willamette River Basin Temperature Tmdl Model: Boundary Conditions And Model Setup, Robert Leslie Annear, Michael Lee Mckillip, Sher Jamal Khan, Chris Berger, Scott A. Wells

Civil and Environmental Engineering Faculty Publications and Presentations

The State of Oregon Department of Environmental Quality (DEQ) is developing a TMDL for temperature in the Willamette River basin shown in Figure 1. The study area included the Willamette River and all major tributaries (except the Tualatin River where a TMDL process was already concluded). A large section of the Columbia River was also modeled to provide adequate boundary representation of tidal flows in the lower Willamette River. The Willamette River below the Oregon City Falls in the Portland metropolitan area has a typical diurnal tidal range of 1 m. The development of a dynamic model of temperature and …


Review Of Spokane River Model For Washington Department Of Ecology, Chris Berger, Robert Leslie Annear, Scott A. Wells Jan 2004

Review Of Spokane River Model For Washington Department Of Ecology, Chris Berger, Robert Leslie Annear, Scott A. Wells

Civil and Environmental Engineering Faculty Publications and Presentations

This memorandum discusses changes made to the Spokane River model calibration since the original calibration of the model discussed in the following reports: Annear et al. (2001), Berger at al. (2002), Slominski et al. (2002), and Berger et al. (2003). The first group of refinements was made by the Washington Department of Ecology. Additional changes were made by Portland State University (PSU) and were discussed in this report along with the results of two alternative calibrations. The last section displays the original calibration results from Berger et al. (2003) as a basis for comparison to the changes made by Ecology …