Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 3 of 3

Full-Text Articles in Physical Sciences and Mathematics

Assessing The Use Of Tsunami Simulations As A Tool To Predict Source Magnitudes And Locations Of Paleoearthquakes In Chile, Rebeca Isabel Becerra Jan 2018

Assessing The Use Of Tsunami Simulations As A Tool To Predict Source Magnitudes And Locations Of Paleoearthquakes In Chile, Rebeca Isabel Becerra

All Master's Theses

A long-term goal of paleotsunami studies is the ability to predict paleoearthquake parameters based on tsunami deposits found on land. Chile provides an exemplary location for testing methods of making these predictions because the historical record includes 41 major earthquakes as far back as 1562 AD, and there are many known paleotsunami deposits throughout the region. Using these records as a comparison tool, I evaluated simulated tsunami wave heights and inundation extent with the tsunami model GeoClaw for nine hypothetical tsunamigenic large earthquakes (Mw 8.6, 8.8, and 9.0) in south-central Chile with epicenters at -35.1º, -38.8º, and -42.9º. As …


Tsunami Excitation Estimation From Real-Time Gnss, Catherine Jeffries Jan 2018

Tsunami Excitation Estimation From Real-Time Gnss, Catherine Jeffries

All Master's Theses

Tsunami early warning systems currently comprise modeling of observations from the global seismic network, deep-ocean DART buoys, and a global distribution of tide gauges. While these tools work well for tsunamis traveling teleseismic distances, saturation of seismic magnitude estimation in the near field can result in significant underestimation of tsunami excitation for local warning (Wang et al., 2012). Moreover, DART buoy and tide gauge observations cannot be used to rectify the underestimation in the available time, typically 10-20 minutes, before local runup occurs. Real-time GNSS measurements of coseismic offsets may be used to estimate finite faulting within 1-2 minutes and, …


Slip Estimation From Real-Time Gps In Cascadia, Jesse Senko Jan 2018

Slip Estimation From Real-Time Gps In Cascadia, Jesse Senko

All Master's Theses

Current systems for rapidly characterizing earthquakes are based on seismic, teleseismic, and Deep-ocean Assessment and Reporting of Tsunami (DART) buoy data. These systems have significant limitations that hinder them from making rapid and accurate assessments of large earthquakes used for local tsunami warnings where run-up can occur minutes after the earthquake. Seismic and teleseismic networks saturate around Mw 7.0. Tsunami waves take tens of minutes to reach the buoys, so rapid assessment is impossible. GPS overcomes these limitations for large earthquakes. GPS does not saturate, and the offsets being detected occur very quickly after an earthquake. This thesis develops …