Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Physical Sciences and Mathematics

Present‐Day Motion Of The Sierra Nevada Block And Some Tectonic Implications For The Basin And Range Province, North American Cordillera, Timothy H. Dixon, M. Meghan Miller, Frederic Farina, Hongzhi Wang, Daniel Johnson Feb 2000

Present‐Day Motion Of The Sierra Nevada Block And Some Tectonic Implications For The Basin And Range Province, North American Cordillera, Timothy H. Dixon, M. Meghan Miller, Frederic Farina, Hongzhi Wang, Daniel Johnson

All Faculty Scholarship for the College of the Sciences

Global Positioning System (GPS) data from five sites on the stable interior of the Sierra Nevada block are inverted to describe its angular velocity relative to stable North America. The velocity data for the five sites fit the rigid block model with rms misfits of 0.3 mm/yr (north) and 0.8 mm/yr (east), smaller than independently estimated data uncertainty, indicating that the rigid block model is appropriate. The new Euler vector, 17.0°N, 137.3°W, rotation rate 0.28 degrees per million years, predicts that the block is translating to the northwest, nearly parallel to the plate motion direction, at 13–14 mm/yr, faster than …


Analysis Of Deformation Data At Parkfield, California: Detection Of A Long-Term Strain Transient, Stephen S. Gao, Paul G. Silver, Alan T. Linde Feb 2000

Analysis Of Deformation Data At Parkfield, California: Detection Of A Long-Term Strain Transient, Stephen S. Gao, Paul G. Silver, Alan T. Linde

Geosciences and Geological and Petroleum Engineering Faculty Research & Creative Works

Analysis of more than a decade of high-quality data, particularly those from the two-color electronic distance meter (EDM), in the Parkfield, California, area reveals a significant transient in slip rate along the San Andreas Fault. This transient consists of an increase in fault slip rate of 3.3 ± 0.9 mm/yr during 1993.0 to 1998.0. The most reliable fault creep instruments show a comparable increase in slip rate, suggesting that the deformation is localized to the fault which breaks the surface. There was also an increase in precipitation around 1993. It is unlikely, however, that this anomaly is due directly to …