Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Fluid Dynamics

Mathematics & Statistics Faculty Publications

Suspensions

Publication Year

Articles 1 - 2 of 2

Full-Text Articles in Physical Sciences and Mathematics

Numerical Simulations Of Capsule Deformation Using A Dual Time-Stepping Lattice Boltzmann Method, Charles Armstrong, Yan Peng Jan 2021

Numerical Simulations Of Capsule Deformation Using A Dual Time-Stepping Lattice Boltzmann Method, Charles Armstrong, Yan Peng

Mathematics & Statistics Faculty Publications

In this work a quasisteady, dual time-stepping lattice Boltzmann method is proposed for simulation of capsule deformation. At each time step the steady-state lattice Boltzmann equation is solved using the full approximation storage multigrid scheme for nonlinear equations. The capsule membrane is modeled as an infinitely thin shell suspended in an ambient fluid domain with the fluid structure interaction computed using the immersed boundary method. A finite element method is used to compute the elastic forces exerted by the capsule membrane. Results for a wide range of parameters and initial configurations are presented. The proposed method is found to reduce …


Monodomain Dynamics For Rigid Rod And Platelet Suspensions In Strongly Coupled Coplanar Linear Flow And Magnetic Fields. Ii. Kinetic Theory, M. Gregory Forest, Sarthok Sircar, Qi Wang, Ruhai Zhou Jan 2006

Monodomain Dynamics For Rigid Rod And Platelet Suspensions In Strongly Coupled Coplanar Linear Flow And Magnetic Fields. Ii. Kinetic Theory, M. Gregory Forest, Sarthok Sircar, Qi Wang, Ruhai Zhou

Mathematics & Statistics Faculty Publications

We establish reciprocity relations of the Doi-Hess kinetic theory for rigid rod macromolecular suspensions governed by the strong coupling among an excluded volume potential, linear flow, and a magnetic field. The relation provides a reduction of the flow and field driven Smoluchowski equation: from five parameters for coplanar linear flows and magnetic field, to two field parameters. The reduced model distinguishes flows with a rotational component, which map to simple shear (with rate parameter) subject to a transverse magnetic field (with strength parameter), and irrotational flows, for which the reduced model consists of a triaxial extensional flow (with two extensional …