Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 13 of 13

Full-Text Articles in Physical Sciences and Mathematics

The Double Galaxy Cluster Abell 2465 – Ii. Star Formation In The Cluster, Gary A. Wegner, Devin S. Chu, Ho Seong Hwang Dec 2014

The Double Galaxy Cluster Abell 2465 – Ii. Star Formation In The Cluster, Gary A. Wegner, Devin S. Chu, Ho Seong Hwang

Dartmouth Scholarship

We investigate the star formation rate and its location in the major merger cluster Abell 2465 at z = 0.245. Optical properties of the cluster are described in Paper I. Measurements of the Hα and infrared dust emission of galaxies in the cluster were made with an interference filter centred on the redshifted line at a wavelength of 817 nm and utilized data from the WISE satellite 12 μm band. Imaging in the Johnson U and B bands was obtained, and along with SDSS u and r was used to study the blue fraction, which appears enhanced, as a further …


A Spectroscopic Survey Of Wise -Selected Obscured Quasars With The Southern African Large Telescope, Kevin N. Hainline, Ryan C. Hickox, Christopher M. Carroll, Adam D. Myers Oct 2014

A Spectroscopic Survey Of Wise -Selected Obscured Quasars With The Southern African Large Telescope, Kevin N. Hainline, Ryan C. Hickox, Christopher M. Carroll, Adam D. Myers

Dartmouth Scholarship

We present the results of an optical spectroscopic survey of a sample of 40 candidate obscured quasars identified on the basis of their mid-infrared emission detected by the Wide-Field Infrared Survey Explorer (WISE). Optical spectra for this survey were obtained using the Robert Stobie Spectrograph on the Southern African Large Telescope. Our sample was selected with WISE colors characteristic of active galactic nuclei (AGNs), as well as red optical to mid-IR colors indicating that the optical/UV AGN continuum is obscured by dust. We obtain secure redshifts for the majority of the objects that comprise our sample (35/40), and …


A Uv To Mid-Ir Study Of Agn Selection, Sun Mi Chung, Christopher S. Kochanek, Roberto Assef, Michael J. I. Brown, Daniel Stern, Buell T. Jannuzi, Anthony H. Gonzalez, Ryan C. Hickox, John Moustakas Jul 2014

A Uv To Mid-Ir Study Of Agn Selection, Sun Mi Chung, Christopher S. Kochanek, Roberto Assef, Michael J. I. Brown, Daniel Stern, Buell T. Jannuzi, Anthony H. Gonzalez, Ryan C. Hickox, John Moustakas

Dartmouth Scholarship

We classify the spectral energy distributions (SEDs) of 431,038 sources in the 9 deg2 Boötes field of the NOAO Deep Wide-Field Survey (NDWFS). There are up to 17 bands of data available per source, including ultraviolet (GALEX), optical (NDWFS), near-IR (NEWFIRM), and mid-infrared (IRAC and MIPS) data, as well as spectroscopic redshifts for ~20,000 objects, primarily from the AGN and Galaxy Evolution Survey. We fit galaxy, active galactic nucleus (AGN), stellar, and brown dwarf templates to the observed SEDs, which yield spectral classes for the Galactic sources and photometric redshifts and galaxy/AGN luminosities for the extragalactic sources. …


Early-Type Galaxies In The Chandra Cosmos Survey, F. Civano, G. Fabbiano, S. Pellegrini, D.-W. Kim Jun 2014

Early-Type Galaxies In The Chandra Cosmos Survey, F. Civano, G. Fabbiano, S. Pellegrini, D.-W. Kim

Dartmouth Scholarship

We study a sample of 69 X-ray detected early-type galaxies (ETGs), selected from the Chandra COSMOS survey, to explore the relation between the X-ray luminosity of hot gaseous halos (L X, gas) and the integrated stellar luminosity (LK ) of the galaxies, in a range of redshift extending out to z = 1.5. In the local universe, a tight, steep relationship has been established between these two quantities, suggesting the presence of largely virialized halos in X-ray luminous systems. We use well-established relations from the study of local universe ETGs, together with the expected evolution …


Obscuration By Gas And Dust In Luminous Quasars, S. M. Usman, S. S. Murray, R. C. Hickox, M. Brodwin Jun 2014

Obscuration By Gas And Dust In Luminous Quasars, S. M. Usman, S. S. Murray, R. C. Hickox, M. Brodwin

Dartmouth Scholarship

We explore the connection between absorption by neutral gas and extinction by dust in mid-infrared (IR) selected luminous quasars. We use a sample of 33 quasars at redshifts 0.7 < z < 3 in the 9 deg^2 Bo\"otes multiwavelength survey field that are selected using Spitzer Space Telescope Infrared Array Camera colors and are well-detected as luminous X-ray sources (with >150 counts) in Chandra observations. We divide the quasars into dust-obscured and unobscured samples based on their optical to mid-IR color, and measure the neutral hydrogen column density N_H through fitting of the X-ray spectra. We find that all subsets of quasars have consistent power law photon indices equal to 1.9 that are uncorrelated with N_H. We classify the quasars as gas-absorbed or gas-unabsorbed if N_H > 10^22 cm^-2 or N_H < 10^22 cm^-2, respectively. Of 24 dust-unobscured quasars in the sample, only one shows clear evidence for significant intrinsic N_H, while 22 have column densities consistent with N_H < 10^22 cm^-2. In contrast, of the nine dust-obscured quasars, six show evidence for intrinsic gas absorption, and three are consistent with N_H < 10^22 cm^-2. We conclude that dust extinction in IR-selected quasars is strongly correlated with significant gas absorption as determined through X-ray spectral fitting. These results suggest that obscuring gas and dust in quasars are generally co-spatial, and confirm the reliability of simple mid-IR and optical photometric techniques for separating quasars based on obscuration.


The Angular Clustering Of Infrared-Selected Obscured And Unobscured Quasars, M. A. Dipompeo, A. D. Myers, R. C. Hickox, J. E. Geach, K. N. Hainline Jun 2014

The Angular Clustering Of Infrared-Selected Obscured And Unobscured Quasars, M. A. Dipompeo, A. D. Myers, R. C. Hickox, J. E. Geach, K. N. Hainline

Dartmouth Scholarship

Recent studies of luminous infrared-selected active galactic nuclei (AGN) suggest that the reddest, most obscured objects display a higher angular clustering amplitude, and thus reside in higher-mass dark matter halos. This is a direct contradiction to the prediction of the simplest unification-by-orientation models of AGN and quasars. However, clustering measurements depend strongly on the "mask" that removes low-quality data and describes the sky and selection function. We find that applying a robust, conservative mask to WISE-selected quasars yields a weaker but still significant difference in the bias between obscured and unobscured quasars. These findings are consistent with results from previous …


Gemini Long-Slit Observations Of Luminous Obscured Quasars: Further Evidence For An Upper Limit On The Size Of The Narrow-Line Region, Kevin N. Hainline, Ryan C. Hickox, Jenny E. Greene, Adam D. Myers May 2014

Gemini Long-Slit Observations Of Luminous Obscured Quasars: Further Evidence For An Upper Limit On The Size Of The Narrow-Line Region, Kevin N. Hainline, Ryan C. Hickox, Jenny E. Greene, Adam D. Myers

Dartmouth Scholarship

We examine the spatial extent of the narrow-line regions (NLRs) of a sample of 30 luminous obscured quasars at 0.4 < z < 0.7 observed with spatially resolved Gemini-N GMOS long-slit spectroscopy. Using the [O III] λ5007 emission feature, we estimate the size of the NLR using a cosmology-independent measurement: the radius where the surface brightness falls to 10–15 erg s–1 cm–2 arcsec–2. We then explore the effects of atmospheric seeing on NLR size measurements and conclude that direct measurements of the NLR size from observed profiles are too large by 0.1-0.2 dex on average, as compared to measurements made to best-fit Sérsic or Voigt profiles convolved with the seeing. These data, which span a full order of magnitude in IR luminosity (log (L 8 μm/erg s–1) = 44.4-45.4), …


Galaxy Pairs In The Sloan Digital Sky Survey - Ix. Merger-Induced Agn Qctivity As Traced By The Wide-Field Infrared Survey Explorer, Shobita Satyapal, Sara L. Ellison, William Mcalpine, Ryan C. Hickox Apr 2014

Galaxy Pairs In The Sloan Digital Sky Survey - Ix. Merger-Induced Agn Qctivity As Traced By The Wide-Field Infrared Survey Explorer, Shobita Satyapal, Sara L. Ellison, William Mcalpine, Ryan C. Hickox

Dartmouth Scholarship

Interactions between galaxies are predicted to cause gas inflows that can potentially trigger nuclear activity. Since the inflowing material can obscure the central regions of interacting galaxies, a potential limitation of previous optical studies is that obscured Active Galactic Nuclei (AGNs) can be missed at various stages along the merger sequence. We present the first large mid-infrared study of AGNs in mergers and galaxy pairs, in order to quantify the incidence of obscured AGNs triggered by interactions. The sample consists of galaxy pairs and post-mergers drawn from the Sloan Digital Sky Survey that are matched to detections by the Wide …


Massive Compact Galaxies With High-Velocity Outflows: Morphological Analysis And Constraints On Agn Activity, P. H. Sell, C. A. Tremonti, R. C. Hickox, A. M. Diamond-Stanic Mar 2014

Massive Compact Galaxies With High-Velocity Outflows: Morphological Analysis And Constraints On Agn Activity, P. H. Sell, C. A. Tremonti, R. C. Hickox, A. M. Diamond-Stanic

Dartmouth Scholarship

We investigate the process of rapid star formation quenching in a sample of 12 massive galaxies at intermediate redshift (z~0.6) that host high-velocity ionized gas outflows (v>1000 km/s). We conclude that these fast outflows are most likely driven by feedback from star formation rather than active galactic nuclei (AGN). We use multiwavelength survey and targeted observations of the galaxies to assess their star formation, AGN activity, and morphology. Common attributes include diffuse tidal features indicative of recent mergers accompanied by bright, unresolved cores with effective radii less than a few hundred parsecs. The galaxies are extraordinarily compact for their …


Weighing Obscured And Unobscured Quasar Hosts With The Cosmic Microwave Background, M. A. Dipompeo, A. D. Myers, R. C. Hickox, J. E. Geach, G. Holder, K. N. Hainline, S. W. Hall Mar 2014

Weighing Obscured And Unobscured Quasar Hosts With The Cosmic Microwave Background, M. A. Dipompeo, A. D. Myers, R. C. Hickox, J. E. Geach, G. Holder, K. N. Hainline, S. W. Hall

Dartmouth Scholarship

We cross-correlate a cosmic microwave background (CMB) lensing map with the projected space densities of quasars to measure the bias and halo masses of a quasar sample split into obscured and unobscured populations, the first application of this method to distinct quasar subclasses. Several recent studies of the angular clustering of obscured quasars have shown that these objects likely reside in higher-mass halos compared to their unobscured counterparts. This has important implications for models of the structure and geometry of quasars, their role in growing supermassive black holes, and mutual quasar/host galaxy evolution. However, the magnitude and significance of this …


Star Formation And Substructure In Galaxy Clusters, Seth A. Cohen, Ryan C. Hickox, Gary A. Wegner, Maret Einasto, Jaan Vennik Feb 2014

Star Formation And Substructure In Galaxy Clusters, Seth A. Cohen, Ryan C. Hickox, Gary A. Wegner, Maret Einasto, Jaan Vennik

Dartmouth Scholarship

We investigate the relationship between star formation (SF) and substructure in a sample of 107 nearby galaxy clusters using data from the Sloan Digital Sky Survey (SDSS). Several past studies of individual galaxy clusters have suggested that cluster mergers enhance cluster SF, while others find no such relationship. The SF fraction in multi-component clusters (0.228 +/- 0.007) is higher than that in single-component clusters (0.175 +/- 0.016) for galaxies with M^0.1_r < -20.5. In both single- and multi-component clusters, the fraction of star-forming galaxies increases with clustercentric distance and decreases with local galaxy number density, and multi-component clusters show a higher SF fraction than single-component clusters at almost all clustercentric distances and local densities. Comparing the SF fraction in individual clusters to several statistical measures of substructure, we find weak, but in most cases significant at greater than 2 sigma, correlations between substructure and SF fraction. These results could indicate that cluster mergers may cause weak but significant SF enhancement in clusters, or unrelaxed clusters exhibit slightly stronger SF due to their less evolved states relative to relaxed clusters.


Tracing The Evolution Of Active Galactic Nuclei Host Galaxies Over The Last 9 Gyr Of Cosmic Time, A. D. Goulding, W. R. Forman, R. C. Hickox, C. Jones Feb 2014

Tracing The Evolution Of Active Galactic Nuclei Host Galaxies Over The Last 9 Gyr Of Cosmic Time, A. D. Goulding, W. R. Forman, R. C. Hickox, C. Jones

Dartmouth Scholarship

We present the results of a combined galaxy population analysis for the host galaxies of active galactic nuclei (AGN) identified at 0 < z < 1.4 within the Sloan Digital Sky Survey, Boötes, and DEEP2 surveys. We identified AGN in a uniform and unbiased manner at X-ray, infrared, and radio wavelengths. Supermassive black holes undergoing radiatively efficient accretion (detected as X-ray and/or infrared AGN) appear to be hosted in a separate and distinct galaxy population than AGN undergoing powerful mechanically dominated accretion (radio AGN). Consistent with some previous studies, radiatively efficient AGN appear to be preferentially hosted in modest star-forming galaxies, with little dependence on AGN or galaxy luminosity. AGN exhibiting radio-emitting jets due to mechanically dominated accretion are almost exclusively observed in massive, passive galaxies. Crucially, we now provide strong evidence that the observed host-galaxy trends are independent of redshift. In particular, these different accretion-mode AGN have remained as separate galaxy populations throughout the last 9 Gyr. Furthermore, it appears that galaxies hosting AGN have evolved along the same path as galaxies that are not hosting AGN with little evidence for distinctly separate evolution.


Black Hole Variability And The Star Formation-Active Galactic Nucleus Connection: Do All Star-Forming Galaxies Host An Active Galactic Nucleus?, Ryan C. Hickox, James R. Mullaney, David M. Alexander, Chien-Ting J. Chen, Francesca M. Civano, Andy D. Goulding, Kevin N. Hainline Jan 2014

Black Hole Variability And The Star Formation-Active Galactic Nucleus Connection: Do All Star-Forming Galaxies Host An Active Galactic Nucleus?, Ryan C. Hickox, James R. Mullaney, David M. Alexander, Chien-Ting J. Chen, Francesca M. Civano, Andy D. Goulding, Kevin N. Hainline

Dartmouth Scholarship

We investigate the effect of active galactic nucleus (AGN) variability on the observed connection between star formation and black hole accretion in extragalactic surveys. Recent studies have reported relatively weak correlations between observed AGN luminosities and the properties of AGN hosts, which has been interpreted to imply that there is no direct connection between AGN activity and star formation. However, AGNs may be expected to vary significantly on a wide range of timescales (from hours to Myr) that are far shorter than the typical timescale for star formation (100 Myr). This variability can have important consequences for observed correlations. We …