Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Environmental Sciences

PDF

Research and Publications

Publication Year

Articles 1 - 4 of 4

Full-Text Articles in Physical Sciences and Mathematics

Visible Light-Induced Enhanced Photoelectrochemical And Photocatalytic Studies Of Gold Decorated Sno2 Nanostructures, Mohammad Mansoob Khan Dr, S. A. Ansari, M. E. Khan, M. O. Ansari, B. K. Min, M. H. Cho Jan 2015

Visible Light-Induced Enhanced Photoelectrochemical And Photocatalytic Studies Of Gold Decorated Sno2 Nanostructures, Mohammad Mansoob Khan Dr, S. A. Ansari, M. E. Khan, M. O. Ansari, B. K. Min, M. H. Cho

Dr. Mohammad Mansoob Khan

This paper reports a novel one-pot biogenic synthesis of Au–SnO2 nanocomposite using electrochemically active biofilm. The synthesis, morphology and structure of the as-synthesized Au–SnO2 nanocomposite were in-depth studied and confirmed by UV-vis spectroscopy, photoluminescence spectroscopy, transmission electron microscopy, X-ray diffraction, and X-ray photoelectron spectroscopy. It was observed that the SnO2 surface was decorated homogeneously with Au nanoparticles. The photoelectrochemical behavior of the Au–SnO2 nanocomposite was examined by cyclic voltammetry, differential pulse voltammetry, electrochemical impedance spectroscopy, and linear sweep voltammetry in the dark and under visible light irradiation. Visible light-induced photoelectrochemical studies confirmed that the Au–SnO2 nanocomposite had enhanced activities compared …


Production Of Bioelectricity, Bio-Hydrogen, High Value Chemicals And 3 Bioinspired Nanomaterials By Electrochemically Active Biofilms, S. Kalathil, Mohammad Mansoob Khan Dr, M. H. Cho, J. Lee May 2013

Production Of Bioelectricity, Bio-Hydrogen, High Value Chemicals And 3 Bioinspired Nanomaterials By Electrochemically Active Biofilms, S. Kalathil, Mohammad Mansoob Khan Dr, M. H. Cho, J. Lee

Dr. Mohammad Mansoob Khan

Microorganisms naturally form biofilms on solid surfaces for their mutual benefits including protection from environmental stresses caused by contaminants, nutritional depletion or imbalances. The biofilms are normally dangerous to human health due to their inherited robustness. On the other hand, a recent study suggested that electrochemically active biofilms (EABs) generated by electrically active microorganisms have properties that can be used to catalyze or control the electrochemical reactions in a range of fields, such as bioenergy production, bioremediation, chemical/biological synthesis, bio-corrosion mitigation and biosensor development. EABs have attracted considerable attraction in bioelectrochemical systems (BESs), such as microbial fuel cells and microbial …


Electrochemically Active Biofilm Mediated Bio-Hydrogen Production Catalyzed By Positively Charged Gold Nanoparticles, Mohammad Mansoob Khan Dr, J. Lee, M. H. Cho Mar 2013

Electrochemically Active Biofilm Mediated Bio-Hydrogen Production Catalyzed By Positively Charged Gold Nanoparticles, Mohammad Mansoob Khan Dr, J. Lee, M. H. Cho

Dr. Mohammad Mansoob Khan

An electrochemically active biofilm (EAB) was used for the synthesis of positively charged gold nanoparticles [(+)AuNPs] and in-situ hydrogen production without any external energy input. The EAB generate electrons and protons by decomposing sodium acetate (carbon source) in water at 30 C. These electrons were used initially to reduce Au3+ to Au0, and later in-situ, these generated electrons and protons were used for hydrogen produc-tion. The as-synthesized (+)AuNPs acted as catalyst by providing a charged surface to reduce the protons, leading to the formation of molecular hydrogen according to the Volmer-Heyrovsky mechanism. The hydrogen produced was confirmed and estimated by …


Enhanced Performance Of A Microbial Fuel Cell Using Cnt/Mno2 Nanocomposites As A Bioanode Materials, S. Kalathil, A Hoa, J Shim, Mohammad Mansoob Khan Dr, J Lee, M H. Cho Jan 2013

Enhanced Performance Of A Microbial Fuel Cell Using Cnt/Mno2 Nanocomposites As A Bioanode Materials, S. Kalathil, A Hoa, J Shim, Mohammad Mansoob Khan Dr, J Lee, M H. Cho

Dr. Mohammad Mansoob Khan

The anode electrode material is a crucial factor for the overall performance of a microbial fuel cell (MFC). In this study, a plain carbon paper modified with the CNT/MnO 2 nanocomposite was used as the anode for the MFC and a mixed culture inoculum was used as the biocatalyst. The modified anode showed better electrochemical performance than that of plain carbon paper, and Brunauer Emmett Teller (BET) analysis showed the high surface area (94.6 m2/g) of the composite. The Mn4+ in the nanocomposite may enhance the electron transfer between the microorganisms and the anode material which facilitates electron conduction. Additionally, …