Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 30 of 36

Full-Text Articles in Physical Sciences and Mathematics

Gis Data: 2016 Chesapeake Bay Sav Coverage, Virginia Institute Of Marine Science, Sav Data Administrator Dec 2017

Gis Data: 2016 Chesapeake Bay Sav Coverage, Virginia Institute Of Marine Science, Sav Data Administrator

Data

Abstract: The 2015 Chesapeake Bay SAV Coverage was mapped from digital multispectral imagery with a 25cm GSD to assess water quality in the Bay. Each area of SAV was interpreted from the rectified imagry and classified into one of four density classes by the percentage of cover. The SAV beds were entered into an SDE GIS fetaure class using the quality control procedures documented below. The dataset contains all SAV areas that were identified from the areas flown. Some areas that are presumed to contain no SAV were not flown. Some small beds, particularly along narrow tributaries may not have …


Catch The King Tide 2017 Data: Hampton, Virginia, Jon Derek Loftis Dec 2017

Catch The King Tide 2017 Data: Hampton, Virginia, Jon Derek Loftis

Data

"Catch the King" was a citizen science GPS data collection effort centered in Hampton Roads, VA, that sought to map the King Tide's maximum inundation extents with the goal of validating and improving predictive models for future forecasting of increasingly pervasive "nuisance" flooding. GPS data points were collected by volunteers to effectively breadcrumb/trace the high water line by pressing the 'Save Data' button in the Sea Level Rise App every few steps along the water's edge during the high tide on the morning of Nov. 5th, 2017. Response from the event's dedicated volunteers, fueled by the local media partners' coverage …


Catch The King Tide 2017 Data: Portsmouth, Virginia, Jon Derek Loftis Dec 2017

Catch The King Tide 2017 Data: Portsmouth, Virginia, Jon Derek Loftis

Data

"Catch the King" was a citizen science GPS data collection effort centered in Hampton Roads, VA, that sought to map the King Tide's maximum inundation extents with the goal of validating and improving predictive models for future forecasting of increasingly pervasive "nuisance" flooding. GPS data points were collected by volunteers to effectively breadcrumb/trace the high water line by pressing the 'Save Data' button in the Sea Level Rise App every few steps along the water's edge during the high tide on the morning of Nov. 5th, 2017. Response from the event's dedicated volunteers, fueled by the local media partners' coverage …


Catch The King Tide 2017 Data: Suffolk, Virginia, Jon Derek Loftis Dec 2017

Catch The King Tide 2017 Data: Suffolk, Virginia, Jon Derek Loftis

Data

"Catch the King" was a citizen science GPS data collection effort centered in Hampton Roads, VA, that sought to map the King Tide's maximum inundation extents with the goal of validating and improving predictive models for future forecasting of increasingly pervasive "nuisance" flooding. GPS data points were collected by volunteers to effectively breadcrumb/trace the high water line by pressing the 'Save Data' button in the Sea Level Rise App every few steps along the water's edge during the high tide on the morning of Nov. 5th, 2017. Response from the event's dedicated volunteers, fueled by the local media partners' coverage …


Catch The King Tide 2017: All King Tide Data, Jon Derek Loftis Dec 2017

Catch The King Tide 2017: All King Tide Data, Jon Derek Loftis

Data

"Catch the King" was a citizen science GPS data collection effort centered in Hampton Roads, VA, that sought to map the King Tide's maximum inundation extents with the goal of validating and improving predictive models for future forecasting of increasingly pervasive "nuisance" flooding. GPS data points were collected by volunteers to effectively breadcrumb/trace the high water line by pressing the 'Save Data' button in the Sea Level Rise App every few steps along the water's edge during the high tide on the morning of Nov. 5th, 2017. Response from the event's dedicated volunteers, fueled by the local media partners' coverage …


Gis Data: Chesterfield County And Cities Of Colonial Heights, Petersburg, And Richmond Shoreline Inventory Report, Marcia Berman, Karinna Nunez, Sharon Killeen, Tamia Rudnicky, Julie Bradshaw, Karen Duhring, Kallie Brown, Jessica Hendricks, David Weiss, Carl Hershner Dec 2017

Gis Data: Chesterfield County And Cities Of Colonial Heights, Petersburg, And Richmond Shoreline Inventory Report, Marcia Berman, Karinna Nunez, Sharon Killeen, Tamia Rudnicky, Julie Bradshaw, Karen Duhring, Kallie Brown, Jessica Hendricks, David Weiss, Carl Hershner

Data

The 2017 Inventory for Chesterfield County and the Cities of Colonial Heights, Petersburg, and Richmond was generated using on-screen, digitizing techniques in ArcGIS® -ArcMap v10.4.1while viewing conditions observed in Bing high resolution oblique imagery, Google Earth, and2013imagery from the Virginia Base Mapping Program (VBMP).Four GIS shapefiles are developed. The first describes land use and bank conditions (Chesterfield_lubc_2017). The second portrays the presence of beaches (Chesterfield_beaches_2017). The third reports shoreline structures that are described as arcs or lines(e.g. riprap)(Chesterfield_sstru_2017). The final shapefile includes all structures that are represented as points (e.g. piers)(Chesterfield_astru_2017).The metadata file accompanies the shapefiles and defines attribute accuracy, …


Fluxes Of Methane, Non-Methane Hydrocarbons And Carbon Dioxide From Natural Gas Well Pad Soils In Eastern Utah, Seth Lyman Jul 2017

Fluxes Of Methane, Non-Methane Hydrocarbons And Carbon Dioxide From Natural Gas Well Pad Soils In Eastern Utah, Seth Lyman

Browse all Datasets

We measured fluxes of methane, non-methane hydrocarbons, and carbon dioxide from natural gas well pad soils and from nearby undisturbed soils in eastern Utah. Methane fluxes varied from less than zero to more than 38,000 mg m-2 h-1. Fluxes from well pad soils were almost always greater than from undisturbed soils. Fluxes were greater from locations with higher concentrations of total combustible gas in soil and were inversely correlated with distance from well heads. Several lines of evidence show that the majority of emission fluxes (about 70%) were due to subsurface sources of raw gas that migrated to the atmosphere, …


Stable Isotopes In Atmospheric Water Vapour From Mauna Loa, Hawaii, 2016-2017, Joseph Galewsky May 2017

Stable Isotopes In Atmospheric Water Vapour From Mauna Loa, Hawaii, 2016-2017, Joseph Galewsky

Earth and Planetary Sciences Faculty and Staff Publications

The isotopic composition of atmospheric water vapor (1H216O, H218O, and 1H2H16O) was continuously measured at the National Oceanic and Atmospheric Administration (NOAA) Mauna Loa Observatory (MLO) from April 8, 2016 through March 13, 2017 using Off-Axis Integrated Cavity Output Spectroscopy (OA-ICOS). The dataset has been carefully corrected for humidity-dependent biases and calibrated against the international VSMOW-SLAP scale to provide a precise, continuous, nearly yearlong dataset from a dynamic subtropical setting. The measurements are provided with 15-minute and 6-hourly resolution.


Gis Data: King George County, Virginia Shoreline Inventory Report, Marcia Berman, Karinna Nunez, Sharon A. Killeen, Tamia Rudnicky, Julie G. Bradshaw, Kory Angstadt, Karen A. Duhring, Kallie Brown, Jessica Hendricks, David Weiss, Carl Hershner Jan 2017

Gis Data: King George County, Virginia Shoreline Inventory Report, Marcia Berman, Karinna Nunez, Sharon A. Killeen, Tamia Rudnicky, Julie G. Bradshaw, Kory Angstadt, Karen A. Duhring, Kallie Brown, Jessica Hendricks, David Weiss, Carl Hershner

Data

The 2017 Inventory for King George County was generated using on-screen, digitizing techniques in ArcGIS® -ArcMap v10.4.1 while viewing conditions observed in Bing high resolution oblique imagery, Google Earth, and 2013 imagery from the Virginia Base Mapping Program (VBMP).Four GIS shapefiles are developed. The first describes land use and bank conditions (King_George_lubc_2017). The second portrays the presence of beaches (King_George _beaches_2017). The third reports shoreline structures that are described as arcs or lines(e.g. riprap)(King_George _sstru_2017). The final shapefile includes all structures that are represented as points(e.g. piers)(King_George_astru_2017).The metadata file accompanies the shapefiles and defines attribute accuracy, data development, and any …


Catch The King Tide 2017 Data: Gloucester & Mathews, Virginia, Jon Derek Loftis Jan 2017

Catch The King Tide 2017 Data: Gloucester & Mathews, Virginia, Jon Derek Loftis

Data

"Catch the King" was a citizen science GPS data collection effort centered in Hampton Roads, VA, that sought to map the King Tide's maximum inundation extents with the goal of validating and improving predictive models for future forecasting of increasingly pervasive "nuisance" flooding. GPS data points were collected by volunteers to effectively breadcrumb/trace the high water line by pressing the 'Save Data' button in the Sea Level Rise App every few steps along the water's edge during the high tide on the morning of Nov. 5th, 2017.

Response from the event's dedicated volunteers, fueled by the local media …


Gis Data: Henrico County, Virginia Tidal Marsh Inventory, Marcia Berman, Karinna Nunez, Sharon Killeen, Tamia Rudnicky, Julie Bradshaw, Karen Duhring, Kallie Brown, Jessica Hendricks, David Weiss, Carl Hershner Jan 2017

Gis Data: Henrico County, Virginia Tidal Marsh Inventory, Marcia Berman, Karinna Nunez, Sharon Killeen, Tamia Rudnicky, Julie Bradshaw, Karen Duhring, Kallie Brown, Jessica Hendricks, David Weiss, Carl Hershner

Data

The 2017 Tidal Marsh Inventory update for Henrico County, Virginia was generated using on-screen digitizing techniques in the most recent version of ArcGIS® - ArcMap while viewing conditions observed in the most recent imagery from the Virginia Base Mapping Program (VBMP). Dominant plant community types were primarily determined during field surveys from shallow-draft boats moving along the shoreline. Land-based surveys were performed in some locations. One shapefile is developed that portrays tidal marsh areas represented as polygons. A metadata file accompanies the shapefile to define attribute accuracy, data development, and any use restrictions that pertain to the data.


Gis Data: The County Of Isle Of Wight, Virginia Shoreline Inventory Report, Marcia Berman, Karinna Nunez, Tamia Rudnicky, Julie Bradshaw, Karen Duhring, Kallie Brown, Jessica Hendricks, David Stanhope, Kory Angstadt, Christine Tombleson, David Weiss, Carl Hershner Jan 2017

Gis Data: The County Of Isle Of Wight, Virginia Shoreline Inventory Report, Marcia Berman, Karinna Nunez, Tamia Rudnicky, Julie Bradshaw, Karen Duhring, Kallie Brown, Jessica Hendricks, David Stanhope, Kory Angstadt, Christine Tombleson, David Weiss, Carl Hershner

Data

The 2017 Inventory for the Isle of Wight County was generated using on-screen, digitizing techniques in ArcGIS® -ArcMap v10.4.1while viewing conditions observed in Bing high resolution oblique imagery, Google Earth, and2013imagery from the Virginia Base Mapping Program (VBMP). Four GIS shapefiles are developed. The first describes land use and bank conditions (IsleofWight_lubc_2017). The second portrays the presence of beaches (IsleofWight_beaches_2017). The third reports shoreline structures that are described as arcs or lines(e.g. riprap)(IsleofWight_sstru_2017). The final shapefile includes all structures that are represented as points(e.g. piers)(IsleofWight_astru_2017).The metadata file accompanies the shapefiles and defines attribute accuracy, data development, and any use restrictions …


Gis Data: The County Of Isle Of Wight, Virginia Shoreline Management Model, Marcia Berman, Karinna Nunez, Tamia Rudnicky, Julie Bradshaw, Karen Duhring, Kallie Brown, Jessica Hendricks, David Stanhope, Kory Angstadt, Christine Tombleson, David Weiss, Carl Hershner Jan 2017

Gis Data: The County Of Isle Of Wight, Virginia Shoreline Management Model, Marcia Berman, Karinna Nunez, Tamia Rudnicky, Julie Bradshaw, Karen Duhring, Kallie Brown, Jessica Hendricks, David Stanhope, Kory Angstadt, Christine Tombleson, David Weiss, Carl Hershner

Data

The Shoreline Management Model is a GIS spatial model that determines appropriate shoreline best management practices using available spatial data and decision tree logic. Available shoreline conditions used in the model include the presence or absence of tidal marshes, beaches, and forested riparian buffers, bank vegetation cover, bank height, wave exposure (fetch), nearshore water depth, and proximity of coastal development to the shoreline. The model output for shoreline best management practices is displayed in the locality Comprehensive Map Viewer. One GIS shapefile is developed that describes two arcs or lines representing practices in the upland area and practices at the …


Gis Data: Hanover County, Virginia Tidal Marsh Inventory, Marcia Berman, Karinna Nunez, Sharon Killeen, Tamia Rudnicky, Julie Bradshaw, Karen A. Duhring, Kallie Brown, Jessica Hendricks, David Stanhope, David Weiss, Carl Hershner Jan 2017

Gis Data: Hanover County, Virginia Tidal Marsh Inventory, Marcia Berman, Karinna Nunez, Sharon Killeen, Tamia Rudnicky, Julie Bradshaw, Karen A. Duhring, Kallie Brown, Jessica Hendricks, David Stanhope, David Weiss, Carl Hershner

Data

The 2017 Tidal Marsh Inventory update for Hanover County, Virginia was generated using on-screen digitizing techniques in the most recent version of ArcGIS® - ArcMap while viewing conditions observed in the most recent imagery from the Virginia Base Mapping Program (VBMP). Dominant plant community types were primarily determined during field surveys from shallow-draft boats moving along the shoreline. Land-based surveys were performed in some locations. One shapefile is developed that portrays tidal marsh areas represented as polygons. A metadata file accompanies the shapefile to define attribute accuracy, data development, and any use restrictions that pertain to the data.


Gis Data: The County Of Spotsylvania Shoreline Inventory Report, Marcia Berman, Karinna Nunez, Tamia Rudnicky, Julie Bradshaw, Karen Duhring, Kallie Brown, Jessica Hendricks, David Weiss, Carl Hershner Jan 2017

Gis Data: The County Of Spotsylvania Shoreline Inventory Report, Marcia Berman, Karinna Nunez, Tamia Rudnicky, Julie Bradshaw, Karen Duhring, Kallie Brown, Jessica Hendricks, David Weiss, Carl Hershner

Data

The 2017 Inventory for Spotsylvania County was generated using on-screen, digitizing techniques in ArcGIS® -ArcMap v10.4.1while viewing conditions observed in Bing high resolution oblique imagery, Google Earth, and2013imagery from the Virginia Base Mapping Program (VBMP).Four GIS shapefiles are developed. The first describes land use and bank conditions (Spotsylvania_lubc_2017). The second portrays the presence of beaches (Spotsylvania_beaches_2017). The third reports shoreline structures that are described as arcs or lines (e.g. riprap)(Spotsylvania_sstru_2017). The final shapefile includes all structures that are represented as points (e.g. piers)(Spotsylvania_astru_2017).The metadata file accompanies the shapefiles and defines attribute accuracy, data development, and any use restrictions that pertain …


Catch The King Tide 2017 Data: Chesapeake, Virginia, Jon Derek Loftis Jan 2017

Catch The King Tide 2017 Data: Chesapeake, Virginia, Jon Derek Loftis

Data

"Catch the King" was a citizen science GPS data collection effort centered in Hampton Roads, VA, that sought to map the King Tide's maximum inundation extents with the goal of validating and improving predictive models for future forecasting of increasingly pervasive "nuisance" flooding. GPS data points were collected by volunteers to effectively breadcrumb/trace the high water line by pressing the 'Save Data' button in the Sea Level Rise App every few steps along the water's edge during the high tide on the morning of Nov. 5th, 2017.

Response from the event's dedicated volunteers, fueled by the local media …


Gis Data: City Of Fredericksburg,Virginia, Shoreline Inventory, Marcia Berman, Karinna Nunez, Sharon Killeen, Tamia Rudnicky, Julie Bradshaw, Karen Duhring, Kallie Brown, Jessica Hendricks, David Weiss, Carl Hershner Jan 2017

Gis Data: City Of Fredericksburg,Virginia, Shoreline Inventory, Marcia Berman, Karinna Nunez, Sharon Killeen, Tamia Rudnicky, Julie Bradshaw, Karen Duhring, Kallie Brown, Jessica Hendricks, David Weiss, Carl Hershner

Data

The 2017 Inventory for the City of Fredericksburg was generated using on-screen, digitizing techniques in ArcGIS® -ArcMap v10.4.1 while viewing conditions observed in Bing high resolution oblique imagery, Google Earth, and 2013 imagery from the Virginia Base Mapping Program (VBMP).Four GIS shapefiles are developed. The first describes land use and bank conditions (Fredericksburg_lubc_2017). The second portrays the presence of beaches (Fredericksburg_beaches_2017). The third reports shoreline structures that are described as arcs or lines(e.g. riprap)(Fredericksburg _sstru_2017). The final shapefile includes all structures that are represented as points(e.g. piers)(Fredericksburg _astru_2017).The metadata file accompanies the shapefiles and defines attribute accuracy, data development, and …


Gis Data: Hanover County, Virginia, Shoreline Inventory Report, Marcia Berman, Karinna Nunez, Sharon Killeen, Tamia Rudnicky, Julie Bradshaw, Karen Duhring, Kallie Brown, Jessica Hendricks, David Weiss, Carl Hershner Jan 2017

Gis Data: Hanover County, Virginia, Shoreline Inventory Report, Marcia Berman, Karinna Nunez, Sharon Killeen, Tamia Rudnicky, Julie Bradshaw, Karen Duhring, Kallie Brown, Jessica Hendricks, David Weiss, Carl Hershner

Data

The 2017 Inventory for Hanover County was generated using on-screen, digitizing techniques in ArcGIS® -ArcMap v10.4.1 while viewing conditions observed in Bing high resolution oblique imagery, Google Earth, and 2013 imagery from the Virginia Base Mapping Program (VBMP).Four GIS shapefiles are developed.The first describes land use and bank conditions (Hanover _lubc_2017). The second portrays the presence of beaches (Hanover _beaches_2017). The third reports shoreline structures that are described as arcs or lines(e.g. riprap)(Hanover _sstru_2017). The final shapefile includes all structures that are represented as points(e.g. piers)(Hanover _astru_2017).The metadata file accompanies the shapefiles and defines attribute accuracy, data development, and any …


Gis Data: Henrico County, Virginia, Shoreline Inventory Report, Marcia Berman, Karinna Nunez, Sharon Killeen, Tamia Rudnicky, Julie Bradshaw, Karen Duhring, Kallie Brown, Jessica Hendricks, David Weiss, Carl Hershner Jan 2017

Gis Data: Henrico County, Virginia, Shoreline Inventory Report, Marcia Berman, Karinna Nunez, Sharon Killeen, Tamia Rudnicky, Julie Bradshaw, Karen Duhring, Kallie Brown, Jessica Hendricks, David Weiss, Carl Hershner

Data

The 2017 Inventory for Henrico County was generated using on-screen, digitizing techniques in ArcGIS® -ArcMap v10.4.1 while viewing conditions observed in Bing high resolution oblique imagery, Google Earth, and 2013 imagery from the Virginia Base Mapping Program (VBMP). Four GIS shapefiles are developed.The first describes land use and bank conditions (Henrico _lubc_2017). The second portrays the presence of beaches (Henrico _beaches_2017). The third reports shoreline structures that are described as arcs or lines(e.g. riprap)(Henrico _sstru_2017). The final shapefile includes all structures that are represented as points(e.g. piers)(Henrico _astru_2017).The metadata file accompanies the shapefiles and defines attribute accuracy, data development, and …


Gis Data: City Of Fredericksburg, Virginia Shoreline Management Model, Marcia Berman, Karinna Nunez, Sharon Killeen, Tamia Rudnicky, Julie Bradshaw, Karen A. Duhring, Kallie Brown, Jessica Hendricks, David Weiss, Carl Hershner Jan 2017

Gis Data: City Of Fredericksburg, Virginia Shoreline Management Model, Marcia Berman, Karinna Nunez, Sharon Killeen, Tamia Rudnicky, Julie Bradshaw, Karen A. Duhring, Kallie Brown, Jessica Hendricks, David Weiss, Carl Hershner

Data

The Shoreline Management Model is a GIS spatial model that determines appropriate shoreline best management practices using available spatial data and decision tree logic. Available shoreline conditions used in the model include the presence or absence of tidal marshes, beaches, and forested riparian buffers, bank vegetation cover, bank height, wave exposure (fetch), nearshore water depth, and proximity of coastal development to the shoreline. The model output for shoreline best management practices is displayed in the locality Comprehensive Map Viewer. One GIS shapefile is developed that describes two arcs or lines representing practices in the upland area and practices at the …


Gis Data: Hanover County, Virginia Shoreline Management Model, Marcia Berman, Karinna Nunez, Sharon Killeen, Tamia Rudnicky, Julie G. Bradshaw, Karen Duhring, Kallie Brown, Jessica Hendricks, David Weiss, Carl Hershner Jan 2017

Gis Data: Hanover County, Virginia Shoreline Management Model, Marcia Berman, Karinna Nunez, Sharon Killeen, Tamia Rudnicky, Julie G. Bradshaw, Karen Duhring, Kallie Brown, Jessica Hendricks, David Weiss, Carl Hershner

Data

The Shoreline Management Model is a GIS spatial model that determines appropriate shoreline best management practices using available spatial data and decision tree logic. Available shoreline conditions used in the model include the presence or absence of tidal marshes, beaches, and forested riparian buffers, bank vegetation cover, bank height, wave exposure (fetch), nearshore water depth, and proximity of coastal development to the shoreline. The model output for shoreline best management practices is displayed in the locality Comprehensive Map Viewer. One GIS shapefile is developed that describes two arcs or lines representing practices in the upland area and practices at the …


Gis Data: King George County, Virginia Shoreline Management Model, Marcia Berman, Karinna Nunez, Sharon Killeen, Tamia Rudnicky, Julie Bradshaw, Kory Angstadt, Karen Duhring, Kallie Brown, Jessica Hendricks, David Weiss, Carl Hershner Jan 2017

Gis Data: King George County, Virginia Shoreline Management Model, Marcia Berman, Karinna Nunez, Sharon Killeen, Tamia Rudnicky, Julie Bradshaw, Kory Angstadt, Karen Duhring, Kallie Brown, Jessica Hendricks, David Weiss, Carl Hershner

Data

The Shoreline Management Model is a GIS spatial model that determines appropriate shoreline best management practices using available spatial data and decision tree logic. Available shoreline conditions used in the model include the presence or absence of tidal marshes, beaches, and forested riparian buffers, bank vegetation cover, bank height, wave exposure (fetch), nearshore water depth, and proximity of coastal development to the shoreline. The model output for shoreline best management practices is displayed in the locality Comprehensive Map Viewer. One GIS shapefile is developed that describes two arcs or lines representing practices in the upland area and practices at the …


Catch The King Tide 2017 Data: Outside Hampton Roads, Virginia, Jon Derek Loftis Jan 2017

Catch The King Tide 2017 Data: Outside Hampton Roads, Virginia, Jon Derek Loftis

Data

"Catch the King" was a citizen science GPS data collection effort centered in Hampton Roads, VA, that sought to map the King Tide's maximum inundation extents with the goal of validating and improving predictive models for future forecasting of increasingly pervasive "nuisance" flooding. GPS data points were collected by volunteers to effectively breadcrumb/trace the high water line by pressing the 'Save Data' button in the Sea Level Rise App every few steps along the water's edge during the high tide on the morning of Nov. 5th, 2017.

Response from the event's dedicated volunteers, fueled by the local media …


Catch The King Tide 2017 Data: Virginia Beach, Virginia, Jon Derek Loftis Jan 2017

Catch The King Tide 2017 Data: Virginia Beach, Virginia, Jon Derek Loftis

Data

No abstract provided.


Catch The King Tide 2017 Data: Newport News, Virginia, Jon Derek Loftis Jan 2017

Catch The King Tide 2017 Data: Newport News, Virginia, Jon Derek Loftis

Data

"Catch the King" was a citizen science GPS data collection effort centered in Hampton Roads, VA, that sought to map the King Tide's maximum inundation extents with the goal of validating and improving predictive models for future forecasting of increasingly pervasive "nuisance" flooding. GPS data points were collected by volunteers to effectively breadcrumb/trace the high water line by pressing the 'Save Data' button in the Sea Level Rise App every few steps along the water's edge during the high tide on the morning of Nov. 5th, 2017.

Response from the event's dedicated volunteers, fueled by the local media …


Catch The King Tide 2017 Data: York & Poquoson, Virginia, Jon Derek Loftis Jan 2017

Catch The King Tide 2017 Data: York & Poquoson, Virginia, Jon Derek Loftis

Data

"Catch the King" was a citizen science GPS data collection effort centered in Hampton Roads, VA, that sought to map the King Tide's maximum inundation extents with the goal of validating and improving predictive models for future forecasting of increasingly pervasive "nuisance" flooding. GPS data points were collected by volunteers to effectively breadcrumb/trace the high water line by pressing the 'Save Data' button in the Sea Level Rise App every few steps along the water's edge during the high tide on the morning of Nov. 5th, 2017.

Response from the event's dedicated volunteers, fueled by the local media …


Catch The King Tide 2017 Data: Norfolk, Virginia, Jon Derek Loftis Jan 2017

Catch The King Tide 2017 Data: Norfolk, Virginia, Jon Derek Loftis

Data

"Catch the King" was a citizen science GPS data collection effort centered in Hampton Roads, VA, that sought to map the King Tide's maximum inundation extents with the goal of validating and improving predictive models for future forecasting of increasingly pervasive "nuisance" flooding. GPS data points were collected by volunteers to effectively breadcrumb/trace the high water line by pressing the 'Save Data' button in the Sea Level Rise App every few steps along the water's edge during the high tide on the morning of Nov. 5th, 2017.

Response from the event's dedicated volunteers, fueled by the local media …


Gis Data: Surry County, Virginia Shoreline Management Model, Marcia Berman, Karinna Nunez, Sharon Killeen, Tamia Rudnicky, Julie G. Bradshaw, Karen Duhring, Kallie Brown, Jessica Hendricks, David Stanhope, David Weiss, Carl Hershner Jan 2017

Gis Data: Surry County, Virginia Shoreline Management Model, Marcia Berman, Karinna Nunez, Sharon Killeen, Tamia Rudnicky, Julie G. Bradshaw, Karen Duhring, Kallie Brown, Jessica Hendricks, David Stanhope, David Weiss, Carl Hershner

Data

The Shoreline Management Model is a GIS spatial model that determines appropriate shoreline best management practices using available spatial data and decision tree logic. Available shoreline conditions used in the model include the presence or absence of tidal marshes, beaches, and forested riparian buffers, bank vegetation cover, bank height, wave exposure (fetch), nearshore water depth, and proximity of coastal development to the shoreline. The model output for shoreline best management practices is displayed in the locality Comprehensive Map Viewer. One GIS shapefile is developed that describes two arcs or lines representing practices in the upland area and practices at the …


Gis Data: Surry County, Virginia Tidal Marsh Inventory, Marcia Berman, Karinna Nunez, Sharon Killeen, Tamia Rudnicky, Julie G. Bradshaw, Karen Duhring, Kallie Brown, Jessica Hendricks, David Stanhope, David Weiss, Carl Hershner Jan 2017

Gis Data: Surry County, Virginia Tidal Marsh Inventory, Marcia Berman, Karinna Nunez, Sharon Killeen, Tamia Rudnicky, Julie G. Bradshaw, Karen Duhring, Kallie Brown, Jessica Hendricks, David Stanhope, David Weiss, Carl Hershner

Data

The 2017 Tidal Marsh Inventory update for Surry County, Virginia was generated using on-screen digitizing techniques in the most recent version of ArcGIS® - ArcMap while viewing conditions observed in the most recent imagery from the Virginia Base Mapping Program (VBMP). Dominant plant community types were primarily determined during field surveys from shallow-draft boats moving along the shoreline. Land-based surveys were performed in some locations. One shapefile is developed that portrays tidal marsh areas represented as polygons. A metadata file accompanies the shapefile to define attribute accuracy, data development, and any use restrictions that pertain to the data.


Gis Data: City Of Fredericksburg, Virginia Tidal Marsh Inventory, Marcia Berman, Karinna Nunez, Sharon Killeen, Tamia Rudnicky, Julie Bradshaw, Karen Duhring, Kallie Brown, Jessica Hendricks, David Weiss, Carl H. Hershner Jan 2017

Gis Data: City Of Fredericksburg, Virginia Tidal Marsh Inventory, Marcia Berman, Karinna Nunez, Sharon Killeen, Tamia Rudnicky, Julie Bradshaw, Karen Duhring, Kallie Brown, Jessica Hendricks, David Weiss, Carl H. Hershner

Data

The 2017 Tidal Marsh Inventory update for the City of Fredericksburg, Virginiawas generated using on-screen digitizing techniques in the most recent version of ArcGIS® - ArcMap while viewing conditions observed in the most recent imagery from the Virginia Base Mapping Program (VBMP). Dominant plant community types were primarily determined during field surveys from shallow-draft boats moving along the shoreline. Land-based surveys were performed in some locations. One shapefile is developed that portrays tidal marsh areas represented as polygons. A metadata file accompanies the shapefile to define attribute accuracy, data development, and any use restrictions that pertain to the data.