Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Physical Sciences and Mathematics

Report: Spatial Facilitation-Inhibition Effects On Vegetation Distribution And Their Associated Patterns, Daniel D'Alessio Aug 2021

Report: Spatial Facilitation-Inhibition Effects On Vegetation Distribution And Their Associated Patterns, Daniel D'Alessio

All Graduate Plan B and other Reports, Spring 1920 to Spring 2023

Changes in the spatial distribution of vegetation respond to variations in the production and transportation mechanisms of seeds at different locations subject to heterogeneities, often because of soil characteristics. In semi-arid environments, the competition for water and nutrients pushes the superficial plant’s roots to obtain scarce resources at long ranges. In this report, we assume that vegetation biomass interacts with itself in two different ways, facilitation and inhibition, depending on the relative distances. We present a 1-dimensional Integro-difference model to represent and study the emergence of patterns in the distribution of vegetation.


Modeling Lake Temperature Response To Climate Change In The Alaskan Arctic, Thomas Balkcom Dec 2019

Modeling Lake Temperature Response To Climate Change In The Alaskan Arctic, Thomas Balkcom

All Graduate Plan B and other Reports, Spring 1920 to Spring 2023

This thesis study focuses on simulating lake temperature and ice duration for four lakes at the Arctic Long-Term Ecological Research site, near the Toolik Field Station in Alaska. Model projections were driven by the representative global climate model outputs under different carbon emission scenarios. Results show that my simple lake model can reproduce historical lake temperature and ice duration observations, indicating the reliability of the model for future projections. Model projections show that JuneSeptember lake temperatures would increase by 4.3-5.8 °C from the historical period with most progressive carbon emission scenarios, but by 0.7-2.2 °C in the conservative scenarios. Results …