Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 10 of 10

Full-Text Articles in Physical Sciences and Mathematics

In Situ Study Of Geological Fluid Inclusions Using 23na Nuclear Magnetic Resonance Spectroscopy, Stephen Pilar Dec 2021

In Situ Study Of Geological Fluid Inclusions Using 23na Nuclear Magnetic Resonance Spectroscopy, Stephen Pilar

Electronic Thesis and Dissertation Repository

23Na Magic Angle Spinning Solid State Nuclear Magnetic Resonance (MAS SS NMR) spectroscopy has been used to study natural geological samples of halite, fluorite, and quartz to evaluate the efficacy of NMR spectroscopy for in situ fluid inclusion analysis. NaCl calibration standards yielded a strong linear correlation (R2=0.9919) for salinity, albeit only over a ~1 ppm breadth of chemical shift. Fluid inclusions were successfully identified in all three types of minerals studied using MAS NMR. Chemical analysis with Inductively Coupled Plasma -- Mass Spectrometry (ICP-MS) was employed to quantify elemental contaminants in halite samples. Powder X-Ray Diffraction …


Reconstructing Carbon Dynamics Of Alpine And Temperate Zone Lakes Using Stable Isotopic Analysis, Rebecca M. Doyle Dec 2020

Reconstructing Carbon Dynamics Of Alpine And Temperate Zone Lakes Using Stable Isotopic Analysis, Rebecca M. Doyle

Electronic Thesis and Dissertation Repository

Lake sediments integrate signals from the catchment, atmosphere and water column, offering a unique window through which to view changes in the carbon cycle. Carbon dynamics in lakes are changing due to nitrogen loading and anthropogenic climate warming (ACW), threatening the water quality of lakes. This thesis identifies how the carbon dynamics of lakes have responded to anthropogenically-driven forcings by comparing pre- and post- AD 1850 records preserved in lake sediments. First, the carbon dynamics of Barry Lake (Ontario, Canada), a low-elevation temperate lake, are investigated. Effective moisture (the net of water inputs and evaporation) is reconstructed using the carbon …


Paleoproductivity Of Late Holocene Lake Huron, Jamal Khaled Nigim Mar 2020

Paleoproductivity Of Late Holocene Lake Huron, Jamal Khaled Nigim

Electronic Thesis and Dissertation Repository

The paleolimnology of North America’s Lake Huron is described using lead-210 dating, mineralogy, magnetic susceptibility, total organic carbon (TOC), total nitrogen (TN), carbon:nitrogen (C/N) ratio, grain size, and the δ13COM and δ15NTN of organic matter. Sediment cores from Lake Huron’s 6 depositional basins and Georgian Bay span the Medieval Warm Period, Little Ice Age, and Canadian-European settlement. The main organic matter source is lacustrine algae, as indicated by δ13COM, δ15NTN and C/N. Prior to the 19th century, primary production changes are reflected only by small variations in …


Plant Stimuli-Responsive Biodegradable Polymers For The Use In Timed Release Fertilizer Coatings, Spencer Heuchan Aug 2018

Plant Stimuli-Responsive Biodegradable Polymers For The Use In Timed Release Fertilizer Coatings, Spencer Heuchan

Electronic Thesis and Dissertation Repository

The use of nitrogen-based fertilizers continues to accelerate with human population growth and increases in global food requirements. Enhanced efficiency fertilizers (EEFs) have been developed to improve the synchronization between nutrient supply and crop nutrient demand. However, many of the current controlled release fertilizers are coated with non-degradable polymers that contribute to accumulation of microplastics within ecosystems. This thesis describes research towards the development of a new class of fertilizer coatings using a self-immolative polymer known as poly (ethyl glyoxylate) (PEtG). PEtG itself does not have suitable properties to produce a viable coating but once blended with another degradable polyester …


Investigating Non-Targeted Screening And Accurate Quantitation Of Trace Surface Water Contaminants Using High-Resolution Mass Spectrometry, Lucas M. Morrison Aug 2018

Investigating Non-Targeted Screening And Accurate Quantitation Of Trace Surface Water Contaminants Using High-Resolution Mass Spectrometry, Lucas M. Morrison

Electronic Thesis and Dissertation Repository

The human impact on surface water is a growing concern and the chemical surveying of contaminants including pharmaceuticals and pesticides is currently lacking. Neonicotinoids in particular, are among the most widely used insecticides that have prompted environmental concern and require monitoring. Chemical contaminants in environmental water samples are commonly analyzed by targeted tandem mass spectrometry. However, this requires a prior knowledge of the contaminants in the area of interest. Here, surface water samples were screened by utilizing optimized data-independent acquisition (DIA) methods and the spectra were databased for future retrospective analysis. This circumvents the requirement for target analytes prior to …


Hydraulic And Electrokinetic Delivery Of Remediants For In-Situ Remediation, Ahmed I. A. Chowdhury Sep 2016

Hydraulic And Electrokinetic Delivery Of Remediants For In-Situ Remediation, Ahmed I. A. Chowdhury

Electronic Thesis and Dissertation Repository

Nano-scale zero valent iron (nZVI) has shown promising mobility and in-situ reactivity with chlorinated volatile organic compounds when injected into saturated porous media. The current study evaluated nZVI mobility and subsequent reactivity with in-situ contaminants in a variably saturated porous media. The nZVI particles, synthesized onsite at subzero temperatures, demonstrated complete trichloroethene (TCE) degradation within the target area. Furthermore, a three dimensional finite difference model (CompSim) was utilized to investigate nZVI mobility in variably saturated zones. Model predicted well head data were in very good agreement with field observations. Simulation results showed that the injected slurry migrated radially outward from …


Field Scale Application Of Nanoscale Zero Valent Iron: Mobility, Contaminant Degradation, And Impact On Microbial Communities, Chris M.D. Kocur Aug 2015

Field Scale Application Of Nanoscale Zero Valent Iron: Mobility, Contaminant Degradation, And Impact On Microbial Communities, Chris M.D. Kocur

Electronic Thesis and Dissertation Repository

This thesis began by verifying that nanoscale zero valent iron (nZVI) synthesis methods could be scaled up and implemented at the field scale in a safe manner. This led to successful demonstration of nZVI injection and mobility under constant head gravity injection into a contaminated utility corridor in Sarnia, Ontario. Where field studies have fallen short in the past was linking the somewhat qualitative field geochemical parameters to other evidence of nZVI transport. Definitive nZVI detection was elusive in previous field studies due to the highly reactive nature of the particles caused by their high surface area. nZVI was detected …


Scale-Up Methodology For Bench-Scale Slurry Photocatalytic Reactors Using Combined Irradiation And Kinetic Modelling, Patricio J. Valades Pelayo Dec 2014

Scale-Up Methodology For Bench-Scale Slurry Photocatalytic Reactors Using Combined Irradiation And Kinetic Modelling, Patricio J. Valades Pelayo

Electronic Thesis and Dissertation Repository

The present study focuses on developing a predictive methodology to scale-up a slurry annular photoreactor using a TiO2 Degussa P25 from the bench-scale to a pilot-plant scale. The bench-scale photoreactor is a Photo-CREC-Water II, a 2.65 L internally-irradiated slurry annular photocatalytic reactor. The pilot-plant scale photoreactor is a Photo-CREC Water Solar Simulator, a 9.8 L pilot-plant photoreactor, externally irradiated by eight lamps.

The adopted methodology allows the independent validation of radiative and kinetic models avoiding cross-correlation issues. The proposed approach involves two Monte Carlo methods, to model the Radiative Transfer Equation (RTE) inside each photoreactor. With this end, a …


The Electrochemistry Of Hydrogen Peroxide On Uranium Dioxide And The Modelling Of Used Nuclear Fuel Corrosion Under Permanent Disposal Conditions, Linda Wu Apr 2014

The Electrochemistry Of Hydrogen Peroxide On Uranium Dioxide And The Modelling Of Used Nuclear Fuel Corrosion Under Permanent Disposal Conditions, Linda Wu

Electronic Thesis and Dissertation Repository

This thesis reports a series of investigations examining the corrosion process of used nuclear fuel under permanent disposal conditions. The motivation of the project is that the safety assessment of deep geological disposal of spent nuclear fuel requires a fundamental understanding of the processes controlling fuel corrosion which could lead to the release of radionuclides to the geosphere from a failed container.

One primary objective of this project was to develop a computational model in order to simulate fuel corrosion under the disposal conditions. A series of simulations based on COMSOL were designed and developed to determine the influence of …


Investigating Interfacial Reactions Of Silver-Containing Films Using Novel Methods, Sarah Danielle Pretty Dec 2011

Investigating Interfacial Reactions Of Silver-Containing Films Using Novel Methods, Sarah Danielle Pretty

Electronic Thesis and Dissertation Repository

This thesis presents work on the mechanism and kinetics of the surface film reactions involving the conversion of aqueous species on solid surfaces, and specifically, the reactions of iodide and bromide on silver oxide on silver substrate. These reactions provide a method of immobilizing unwanted halides and are particularly suited to control of hazardous radioactive iodine. Potential applications of this research include nuclear reactor safety and post-accident radioiodine management, and the safe production and use of the medical isotope 131I.

The aqueous-solid conversion of reaction Ag2O with X-(aq) to form AgX on a Ag substrate …