Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Engineering Science and Materials

Series

Institution
Keyword
Publication Year
Publication
File Type

Articles 1 - 30 of 110

Full-Text Articles in Physical Sciences and Mathematics

A Computational Investigation Of Wood Selection For Acoustic Guitar, Jonah Osterhus May 2024

A Computational Investigation Of Wood Selection For Acoustic Guitar, Jonah Osterhus

Senior Honors Theses

The acoustic guitar is a stringed instrument, often made of wood, that transduces vibrational energy of steel strings into coupled vibrations of the wood and acoustic pressure waves in the air. Variations in wood selection and instrument geometry have been shown to affect the timbre of the acoustic guitar. Computational methods were utilized to investigate the impact of material properties on acoustic performance. Sitka spruce was deemed the most suitable wood for guitar soundboards due to its acoustic characteristics, strength, and uniform aesthetic. Mahogany was deemed to be the best wood for the back and sides of the guitar body …


The Behavior Of ½⟨111⟩ Screw Dislocations In W–Mo Alloys Analyzed Through Atomistic Simulations, Lucas A. Heaton, Kevin Chu, Adib J. Samin Feb 2024

The Behavior Of ½⟨111⟩ Screw Dislocations In W–Mo Alloys Analyzed Through Atomistic Simulations, Lucas A. Heaton, Kevin Chu, Adib J. Samin

Faculty Publications

Analyzing plastic flow in refractory alloys is relevant to many different commercial and technological applications. In this study, screw dislocation statics and dynamics were studied for various compositions of the body-centered cubic binary alloy tungsten–molybdenum (W–Mo). The core structure did not appear to change for different alloy compositions, consistent with the literature. The pure tungsten and pure molybdenum samples had the lowest plastic flow, while the highest dislocation velocities were observed for equiatomic, W0.5Mo0.5 alloys. In general, dislocation velocities were found to largely align with a well-established dislocation mobility phenomenological model supporting two discrete dislocation mobility regimes, …


Structured Invariant Subspace And Decomposition Of Systems With Time Delays And Uncertainties, Huan Phan-Van, Keqin Gu Jan 2024

Structured Invariant Subspace And Decomposition Of Systems With Time Delays And Uncertainties, Huan Phan-Van, Keqin Gu

SIUE Faculty Research, Scholarship, and Creative Activity

This article discusses invariant subspaces of a matrix with a given partition structure. The existence of a nontrivial structured invariant subspace is equivalent to the possibility of decomposing the associated system with multiple feedback blocks such that the feedback operators are subject to a given constraint. The formulation is especially useful in the stability analysis of time-delay systems using the Lyapunov-Krasovskii functional approach where computational efficiency is essential in order to achieve accuracy for large scale systems. The set of all structured invariant subspaces are obtained (thus all possible decompositions are obtained as a result) for the coupled differential-difference equations …


Impact Of Silicon Ion Irradiation On Aluminum Nitride-Transduced Microelectromechanical Resonators, David D. Lynes, Joshua Young, Eric Lang, Hengky Chandrahalim Nov 2023

Impact Of Silicon Ion Irradiation On Aluminum Nitride-Transduced Microelectromechanical Resonators, David D. Lynes, Joshua Young, Eric Lang, Hengky Chandrahalim

Faculty Publications

Microelectromechanical systems (MEMS) resonators use is widespread, from electronic filters and oscillators to physical sensors such as accelerometers and gyroscopes. These devices' ubiquity, small size, and low power consumption make them ideal for use in systems such as CubeSats, micro aerial vehicles, autonomous underwater vehicles, and micro-robots operating in radiation environments. Radiation's interaction with materials manifests as atomic displacement and ionization, resulting in mechanical and electronic property changes, photocurrents, and charge buildup. This study examines silicon (Si) ion irradiation's interaction with piezoelectrically transduced MEMS resonators. Furthermore, the effect of adding a dielectric silicon oxide (SiO2) thin film is …


Assessment Of Bridge Pier Response To Fire, Vehicle Impact, And Air Blast, Chen Fang, Qusai Alomari, Daniel G. Linzell May 2023

Assessment Of Bridge Pier Response To Fire, Vehicle Impact, And Air Blast, Chen Fang, Qusai Alomari, Daniel G. Linzell

Department of Civil and Environmental Engineering: Dissertations, Theses, and Student Research

Highway bridges exposed to intentional or unintentional fire followed by combined vehicle impact and air blast are at risk of significant damage and, possibly, collapse. Limited studies examining the complex effects of these extreme demands on bridge support elements and parametrizing their response and damage are found in the open literature. Research that is presented is part of an ongoing numerical investigation examining round, multi-column, reinforced concrete (RC), bridge pier behavior subject to multi-hazard scenarios involving fire, vehicle impact, and air blast. Detailed nonlinear finite element analysis models of single columns and multi-column piers supported by a pile foundation system …


Thermal Stability Of Platinum-Silicon Alloy Films Grown On Langasite Substrates For Use In Microwave Acoustic Sensor Technology, Kell Fremouw Apr 2023

Thermal Stability Of Platinum-Silicon Alloy Films Grown On Langasite Substrates For Use In Microwave Acoustic Sensor Technology, Kell Fremouw

Honors College

Wireless sensors that can operate in temperatures up to 1000°C are widely needed for real time monitoring of large-scale industrial processes. Such sensors will improve efficiency and prevent component failure. Under previous work at UMaine, Surface Acoustic Wave Resonator (SAWR) sensors fabricated on piezoelectric langasite (La3Ga5SiO14) wafers have shown promise for wireless strain measurements at high temperatures. However, there is a major technical challenge in attaching SAWR langasite based sensors to metal parts because the large differences in the coefficient of thermal expansion (CTE) between langasite and metals leads to large thermal stresses and …


Electromagnetic Theory And Applications, Nicholas Madamopoulos, George Kliros Jan 2023

Electromagnetic Theory And Applications, Nicholas Madamopoulos, George Kliros

Open Educational Resources

This book intends to provide both the fundamentals of Electromagnetics but also some practical applications of the concepts covered. Having taught electromagnetics for several years, the authors feel that many times the field of electromagnetics comes as “old” and often times students do not appreciate the concepts and their importance in everyday applications. The authors intend to accompany the EM concepts with life applications. Hence, students may see the direct impact of the knowledge they acquire through the study of the field of electromagnetics and better appreciate the field.


Survey Data: Optimising Retrofitted Insulation For Irish Residential Building Walls, Rakshit D. Muddu, Aimee Byrne, Anthony Robinson Dr. Jan 2023

Survey Data: Optimising Retrofitted Insulation For Irish Residential Building Walls, Rakshit D. Muddu, Aimee Byrne, Anthony Robinson Dr.

Datasets

A survey was conducted to determine the preferred set point temperature and heating pattern among Irish households. The survey was sent to 237 people living across Ireland, out of which 32 respondents skipped the survey and 9 surveys were found to be incomplete. Amongst the counties in Ireland 71.1% respondents were from Dublin, 6.34% from Kildare, 5% from Meath, 5% from Wicklow and in all the remaining counties response rate was below 2%. Part 1: This section of the survey recorded information regarding characteristics of the building such as house type, wall type, insulation type, period the house was built. …


Influence Of Defects On In-Plane Dynamic Properties Of Hexagonal Ligament Chiral Structures, Ning An, Xunwen Su, Dongmei Zhu, Mileta M. Tomovic Sep 2022

Influence Of Defects On In-Plane Dynamic Properties Of Hexagonal Ligament Chiral Structures, Ning An, Xunwen Su, Dongmei Zhu, Mileta M. Tomovic

Engineering Technology Faculty Publications

Although the six-ligament chiral structure has many unique properties, due to its special structure, the stress concentration is prone to defects. In addition, additive manufacturing is also prone to defects. This paper studies the effect of defects, which is helpful for the better application of the six-ligament chiral structure. Several new six-ligament chiral structures with random and concentrated defects were designed to explore the effects of the defects on the in-plane dynamic properties. The structures were studied with the finite element ANSYS/LSDYNA numerical simulation and experimental methods. According to the defect-free six-ligament chiral structures exhibiting different deformation modes at different …


Bbt Acoustic Alternative Top Bracing Cadd Data Set-Norev-2022jun28, Bill Hemphill Jul 2022

Bbt Acoustic Alternative Top Bracing Cadd Data Set-Norev-2022jun28, Bill Hemphill

STEM Guitar Project’s BBT Acoustic Kit

This electronic document file set consists of an overview presentation (PDF-formatted) file and companion video (MP4) and CADD files (DWG & DXF) for laser cutting the ETSU-developed alternate top bracing designs and marking templates for the STEM Guitar Project’s BBT (OM-sized) standard acoustic guitar kit. The three (3) alternative BBT top bracing designs in this release are
(a) a one-piece base for the standard kit's (Martin-style) bracing,
(b) 277 Ladder-style bracing, and
(c) an X-braced fan-style bracing similar to traditional European or so-called 'classical' acoustic guitars.

The CADD data set for each of the three (3) top bracing designs includes …


Bbt Side Mold Assy, Bill Hemphill Jun 2022

Bbt Side Mold Assy, Bill Hemphill

STEM Guitar Project’s BBT Acoustic Kit

This electronic document file set covers the design and fabrication information of the ETSU Guitar Building Project’s BBT (OM-sized) Side Mold Assy for use with the STEM Guitar Project’s standard acoustic guitar kit. The extended 'as built' data set contains an overview file and companion video, the 'parent' CADD drawing, CADD data for laser etching and cutting a drill &/or layout template, CADD drawings in AutoCAD .DWG and .DXF R12 formats of the centerline tool paths for creating the mold assembly pieces on an AXYZ CNC router, and support documentation for CAM applications including router bit specifications, feeds, speed, multi-pass …


Monolithically Integrated Microscale Pressure Sensor On An Optical Fiber Tip, Jeremiah C. Williams, Hengky Chandrahalim May 2022

Monolithically Integrated Microscale Pressure Sensor On An Optical Fiber Tip, Jeremiah C. Williams, Hengky Chandrahalim

AFIT Patents

A passive microscopic Fabry-Pérot Interferometer (FPI) pressure sensor includes an optical fiber and a three-dimensional microscopic optical enclosure. The three-dimensional microscopic optical enclosure includes tubular side walls having lateral pleated corrugations and attached to a cleaved tip of the optical fiber to receive a light signal. An optically reflecting end wall is distally engaged to the tubular side walls to enclose a trapped quantity of gas that longitudinally positions the optically reflecting end wall in relation to ambient air pressure, changing a distance traveled by a light signal reflected back through the optical fiber.


Method Of Making Hinged Self-Referencing Fabry–Pérot Cavity Sensors, Jeremiah C. Williams, Hengky Chandrahalim Mar 2022

Method Of Making Hinged Self-Referencing Fabry–Pérot Cavity Sensors, Jeremiah C. Williams, Hengky Chandrahalim

AFIT Patents

A method is provided for fabricating a passive optical sensor on a tip of an optical fiber. The method includes perpendicularly cleaving a tip of an optical fiber and mounting the tip of the optical fiber in a specimen holder of a photosensitive polymer three-dimensional micromachining machine. The method includes forming a three-dimensional microscopic optical structure within the photosensitive polymer that comprises a two cavity Fabry-Perot Interferometer (FPI) having a hinged optical layer that is pivotally coupled to a suspended structure. The method includes removing an uncured portion of the photosensitive polymer using a solvent. The method includes depositing a …


Nb₃Sn Coating Of A 2.6 Ghz Srf Cavity By Sputter Deposition Technique, M. S. Shakel, Wei Cao, H. Elsayed-Ali, G. V. Eremeev, U. Pudasaini, A. M. Valente-Feliciano Jan 2022

Nb₃Sn Coating Of A 2.6 Ghz Srf Cavity By Sputter Deposition Technique, M. S. Shakel, Wei Cao, H. Elsayed-Ali, G. V. Eremeev, U. Pudasaini, A. M. Valente-Feliciano

Electrical & Computer Engineering Faculty Publications

Nb₃Sn is of interest as a coating for SRF cavities due to its higher transition temperature Tc ~18.3 K and superheating field Hsh ~400 mT, both are twice that of Nb. Nb₃Sn coated cavities can achieve high-quality factors at 4 K and can replace the bulk Nb cavities operated at 2 K. A cylindrical magnetron sputtering system was built, commissioned, and used to deposit Nb₃Sn on the inner surface of a 2.6 GHz single-cell Nb cavity. With two identical cylindrical magnetrons, this system can coat a cavity with high symmetry and uniform thickness. Using Nb-Sn multilayer sequential sputtering followed by …


Method Of Making Temperature-Immune Self-Referencing Fabry–Pérot Cavity Sensors, Hengky Chandrahalim, Jonathan W. Smith Oct 2021

Method Of Making Temperature-Immune Self-Referencing Fabry–Pérot Cavity Sensors, Hengky Chandrahalim, Jonathan W. Smith

AFIT Patents

A method of making passive microscopic Fabry-Pérot Interferometer (FPI) sensor includes forming a three-dimensional microscopic optical structure on a cleaved tip of an optical fiber that reflects a light signal back through the optical fiber. The reflected light is altered by refractive index changes in the three-dimensional structure that is subject to at least one of: (i) thermal radiation; and (ii) volatile organic compounds.


Investigation And Statistical Modeling Of The Mechanical Properties Of Additively Manufactured Lattices, Derek G. Spear, Anthony N. Palazotto Jul 2021

Investigation And Statistical Modeling Of The Mechanical Properties Of Additively Manufactured Lattices, Derek G. Spear, Anthony N. Palazotto

Faculty Publications

This paper describes the background, test methodology, and experimental results associated with the testing and analysis of quasi-static compression testing of additively manufactured open-cell lattice structures. The study aims to examine the effect of lattice topology, cell size, cell density, and surface thickness on the mechanical properties of lattice structures. Three lattice designs were chosen, the Diamond, I-WP, and Primitive Triply Periodic Minimal Surfaces (TPMSs). Uniaxial compression tests were conducted for every combination of the three lattice designs, three cell sizes, three cell densities, and three surface thicknesses. In order to perform an efficient experiment and gain the most information …


Lecture 00: Opening Remarks: 46th Spring Lecture Series, Tulin Kaman Apr 2021

Lecture 00: Opening Remarks: 46th Spring Lecture Series, Tulin Kaman

Mathematical Sciences Spring Lecture Series

Opening remarks for the 46th Annual Mathematical Sciences Spring Lecture Series at the University of Arkansas, Fayetteville.


Quantifying Shape Of Star-Like Objects Using Shape Curves And A New Compactness Measure, Gopal K. Mulukutla, Emese Hadnagy, Matthew Fearon, Edward Garboczi Jan 2021

Quantifying Shape Of Star-Like Objects Using Shape Curves And A New Compactness Measure, Gopal K. Mulukutla, Emese Hadnagy, Matthew Fearon, Edward Garboczi

Earth Systems Research Center

Shape is an important indicator of the physical and chemical behavior of natural and engineered particulate materials (e.g., sediment, sand, rock, volcanic ash). It directly or indirectly affects numerous microscopic and macroscopic geologic, environmental and engineering processes. Due to the complex, highly irregular shapes found in particulate materials, there is a perennial need for quantitative shape descriptions. We developed a new characterization method (shape curve analysis) and a new quantitative measure (compactness, not the topological mathematical definition) by applying a fundamental principle that the geometric anisotropy of an object is a unique signature of its internal spatial distribution …


Fluid-Wall Interactions In Pseudopotential Lattice Boltzmann Models, Cheng Peng, Luis F. Ayala, Orlando M. Ayala Jan 2021

Fluid-Wall Interactions In Pseudopotential Lattice Boltzmann Models, Cheng Peng, Luis F. Ayala, Orlando M. Ayala

Engineering Technology Faculty Publications

Designing proper fluid-wall interaction forces to achieve proper wetting conditions is an important area of interest in pseudopotential lattice Boltzmann models. In this paper, we propose a modified fluid-wall interaction force that applies for pseudopotential models of both single-component fluids and partially miscible multicomponent fluids, such as hydrocarbon mixtures. A reliable correlation that predicts the resulting liquid contact angle on a flat solid surface is also proposed. This correlation works well over a wide variety of pseudopotential lattice Boltzmann models and thermodynamic conditions.


Resource-Saving Technologies For The Production Of Elastic Leather Materials: Collective Monograph, Olena Korotych, Anatolii Danylkovych, Serhii Bilinskyi, Serhii Bondarenko, Slava Branovitska, Vasyl Chervinskyi, Nataliia Khliebnikova, Alona Kudzieva, Viktor Lishchuk, Nataliia Lysenko, Olena Mokrousova, Nataliia Omelchenko, Vera Palamar, Yuliia Potakh, Oksana Romanyuk, Olga Sanginova, Oleksandr Zhyhotsky Oct 2020

Resource-Saving Technologies For The Production Of Elastic Leather Materials: Collective Monograph, Olena Korotych, Anatolii Danylkovych, Serhii Bilinskyi, Serhii Bondarenko, Slava Branovitska, Vasyl Chervinskyi, Nataliia Khliebnikova, Alona Kudzieva, Viktor Lishchuk, Nataliia Lysenko, Olena Mokrousova, Nataliia Omelchenko, Vera Palamar, Yuliia Potakh, Oksana Romanyuk, Olga Sanginova, Oleksandr Zhyhotsky

Chemistry Publications and Other Works

This monograph contains a collection of recent research papers focusing on advancing existing technologies and developing new technologies to improve the environmentally friendliness and save resources during the production of elastic leather materials. The papers are organized based on the type of technological process used to preserve raw hides. A lot of attention is devoted to mathematical planning, simulations, and multicriteria optimization of the technological processes using newly developed chemical reagents. The monograph contains a complex study of physicochemical properties and characteristics of the resulting leather materials. The developed technologies were tested by the private joint-stock company Chinbar (Kyiv, Ukraine) …


Dynamics Of Discontinuities In Elastic Solids, Arkadi Berezovski, Mihhail Berezovski Jul 2020

Dynamics Of Discontinuities In Elastic Solids, Arkadi Berezovski, Mihhail Berezovski

Publications

The paper is devoted to evolving discontinuities in elastic solids. A discontinuity is represented as a singular set of material points. Evolution of a discontinuity is driven by the configurational force acting at such a set. The main attention is paid to the determination of the velocity of a propagating discontinuity. Martensitic phase transition fronts and brittle cracks are considered as representative examples.


Aps March Meeting 2020: Undergraduate-Friendly Research In Soft Matter And Beyond, Vianney Gimenez-Pinto May 2020

Aps March Meeting 2020: Undergraduate-Friendly Research In Soft Matter And Beyond, Vianney Gimenez-Pinto

Title III Professional Development Reports

The in-person APS March Meeting 2020 taking place in Denver during March 02-06, 2020 was canceled in the last minute out of Covid-19 concerns for the well-being of the scientific community as well as the population of the city of Denver and the state of Colorado. Nevertheless, well-planned logistics by the physics community and the APS leadership, allowed attendants to share their findings, presenting their research works to their peers, and continuing the work towards the advancement of science. Given the historical and on-going under-representation of students of color in science and technology at all academic levels, there is a …


Subsurface Analytics: Contribution Of Artificial Intelligence And Machine Learning To Reservoir Engineering, Reservoir Modeling, And Reservoir Management, Shahab D. Mohaghegh Apr 2020

Subsurface Analytics: Contribution Of Artificial Intelligence And Machine Learning To Reservoir Engineering, Reservoir Modeling, And Reservoir Management, Shahab D. Mohaghegh

Faculty & Staff Scholarship

Subsurface Analytics is a new technology that changes the way reservoir simulation and modeling is performed. Instead of starting with the construction of mathematical equations to model the physics of the fluid flow through porous media and then modification of the geological models in order to achieve history match, Subsurface Analytics that is a completely AI-based reservoir simulation and modeling technology takes a completely different approach. In AI-based reservoir modeling, field measurements form the foundation of the reservoir model. Using data-driven, pattern recognition technologies; the physics of the fluid flow through porous media is modeled through discovering the best, most …


Morphology And Structure Of Pb Thin Films Grown On Si (111) By Pulsed Laser Deposition, Bektur Abdisatarov Apr 2020

Morphology And Structure Of Pb Thin Films Grown On Si (111) By Pulsed Laser Deposition, Bektur Abdisatarov

Masters Theses & Specialist Projects

Pulsed laser deposition (PLD) is a versatile thin film deposition technique in which high powered laser beam interacts with a target material inside an ultrahigh vacuum chamber. Highly energetic particles such as electrons, atoms, protons, and ions generate a plasma plume that directed towards a substrate material where recondenses form a thin film. PLD is an effective and reliable method to create varieties of thin films such as metal, polymer, and ceramic for many technologically essential applications.

In this study, thin Pb films were grown by pulsed laser deposition on Si (111) at various laser fluences, pulse wavelengths, deposition times, …


Attainment Of Rigorous Thermodynamic Consistency And Surface Tension In Single-Component Pseudopotential Lattice Boltzmann Models Via A Customized Equation Of State, Cheng Peng, Luis F. Ayala, Zhicheng Wang, Orlando M. Ayala Jan 2020

Attainment Of Rigorous Thermodynamic Consistency And Surface Tension In Single-Component Pseudopotential Lattice Boltzmann Models Via A Customized Equation Of State, Cheng Peng, Luis F. Ayala, Zhicheng Wang, Orlando M. Ayala

Engineering Technology Faculty Publications

The lack of thermodynamic consistency is a well-recognized problem in the single-component pseudopotential lattice Boltzmann models which prevents them from replicating accurate liquid and vapor phase densities; i.e., current models remain unable to exactly match coexisting density values predicted by the associated thermodynamic model. Most of the previous efforts had attempted to solve this problem by introducing tuning parameters, whose determination required empirical trial and error until acceptable thermodynamic consistency was achieved. In this study, we show that the problem can be alternatively solved by properly designing customized equations of state (EOSs) that replace any cubic EOS of choice during …


Superconductivity In La₂Ni₂In, Jannis Maiwald, Igor I. Mazin, Alex Gurevich, Meigan Aronson Jan 2020

Superconductivity In La₂Ni₂In, Jannis Maiwald, Igor I. Mazin, Alex Gurevich, Meigan Aronson

Physics Faculty Publications

We report here the properties of single crystals of La2Ni2In. Electrical resistivity and specific heat measurements concur with the results of density functional theory calculations, finding that La2Ni2In is a weakly correlated metal, where the Ni magnetism is almost completely quenched, leaving only a weak Stoner enhancement of the density of states. Superconductivity is observed at temperatures below 0.9 K. A detailed analysis of the field and temperature dependencies of the resistivity, magnetic susceptibility, and specific heat at the lowest temperatures reveals that La2Ni2In is a dirty type-II …


Reliability Estimation Of Reciprocating Seals Based On Multivariate Dependence Analysis And It's Experimental Validation, Chao Zhang, Rentong Chen, Shaoping Wang, Yujie Qian, Mileta M. Tomovic Jan 2019

Reliability Estimation Of Reciprocating Seals Based On Multivariate Dependence Analysis And It's Experimental Validation, Chao Zhang, Rentong Chen, Shaoping Wang, Yujie Qian, Mileta M. Tomovic

Engineering Technology Faculty Publications

Accurate reliability estimation for reciprocating seals is of great significance due to their wide use in numerous engineering applications. This work proposes a reliability estimation method for reciprocating seals based on multivariate dependence analysis of different performance indicators. Degradation behavior corresponding to each performance indicator is first described by the Wiener process. Dependence among different performance indicators is then captured using D-vine copula, and a weight-based copula selection method is utilized to determine the optimal bivariate copula for each dependence relationship. A two-stage Bayesian method is used to estimate the parameters in the proposed model. Finally, a reciprocating seal degradation …


Experimental Verification Of Transparent Spin Mode In Rhic, V. S. Morozov, P. Adams, Y. S. Derbenev, Y. Filatov, H. Huang, A. M. Kondratenko, M. A. Kondratenko, F. Lin, F. Méot, V. Ptitsyn, W. B. Schmidke, Y. Zhang Jan 2019

Experimental Verification Of Transparent Spin Mode In Rhic, V. S. Morozov, P. Adams, Y. S. Derbenev, Y. Filatov, H. Huang, A. M. Kondratenko, M. A. Kondratenko, F. Lin, F. Méot, V. Ptitsyn, W. B. Schmidke, Y. Zhang

Engineering Technology Faculty Publications

High electron and ion polarizations are some of the key design requirements of a future Electron Ion Collider (EIC). The transparent spin mode, a concept inspired by the figure 8 ring design of JLEIC, is a novel technique for preservation and control of electron and ion spin polarizations in a collider or storage ring. It makes the ring lattice "invisible" to the spin and allows for polarization control by small quasi-static magnetic fields with practically no effect on the beam’s orbital characteristics. It offers unique opportunities for polarization maintenance and control in Jefferson Lab’s JLEIC and in BNL’s eRHIC. The …


The Effect Of Curing And Zirconium Content On The Wettability And Structure Of A Silicate Hybrid Sol-Gel Material, Emma Machugh, Maikki Cullen, Alicja Kaworek, Brendan Duffy, Mohamed Oubaha Jan 2019

The Effect Of Curing And Zirconium Content On The Wettability And Structure Of A Silicate Hybrid Sol-Gel Material, Emma Machugh, Maikki Cullen, Alicja Kaworek, Brendan Duffy, Mohamed Oubaha

Articles

Functional hybrid sol-gel coatings have been developed for numerous applications with a wide range of wettabilities. This study proposes to investigate the relationship between the structure and the wetting properties of a zirconium modified silicate hybrid sol-gel coating. The structures of the coatings were altered by varying the content of zirconium, and the curing process, while keeping the sol-gel preparation conditions identical. The structure of the materials was characterized by FTIR, 29Si NMR and SEM. The thermal properties and the wettability are identified by DSC and contact angle measurements, respectively. By corroborating the structural and wettability analyses, it is shown …


Photocatalytic Activity: Experimental Features To Report In Heterogeneous Photocatalysis, Md. Ariful Hoque, Marcelo I. Guzman Oct 2018

Photocatalytic Activity: Experimental Features To Report In Heterogeneous Photocatalysis, Md. Ariful Hoque, Marcelo I. Guzman

Chemistry Faculty Publications

Heterogeneous photocatalysis is a prominent area of research with major applications in solar energy conversion, air pollution mitigation, and removal of contaminants from water. A large number of scientific papers related to the photocatalysis field and its environmental applications are published in different journals specializing in materials and nanomaterials. However, many problems exist in the conception of papers by authors unfamiliar with standard characterization methods of photocatalysts as well as with the procedures needed to determine photocatalytic activities based on the determination of “apparent quantum efficiencies” within a wavelength interval or “apparent quantum yields” in the case of using monochromatic …