Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 18 of 18

Full-Text Articles in Physical Sciences and Mathematics

Analysis, Prototyping, And Design Of An Ionization Profile Monitor For The Spallation Neutron Source Accumulator Ring, Dirk A. Bartkoski Dec 2013

Analysis, Prototyping, And Design Of An Ionization Profile Monitor For The Spallation Neutron Source Accumulator Ring, Dirk A. Bartkoski

Doctoral Dissertations

The Spallation Neutron Source (SNS) located in the Oak Ridge National Laboratory is comprised of a 1 GeV linear H- [H^-] accelerator followed by an accumulator ring that delivers high intensity 1 μs [microsecond] long pulses of 1.5x1014 [1.5x10^14] protons to a liquid mercury target for neutron production by spallation reaction. With its strict 0.01% total beam loss condition, planned power upgrade, and proposed second target station, SNS ring beam-profile diagnostics capable of monitoring evolving beam conditions during high-power conditions are crucial for efficient operation and improvement. By subjecting ionized electrons created during beam interactions with the residual …


Enhancing The Performance Of Organic Thin Film Transistors By Cross-Linking The Organic Gate Dielectric, Soheila Naderi Gohar Nov 2013

Enhancing The Performance Of Organic Thin Film Transistors By Cross-Linking The Organic Gate Dielectric, Soheila Naderi Gohar

Electronic Thesis and Dissertation Repository

Amongst various surface modification techniques, hyperthermal hydrogen induced cross-linking (HHIC) has been used to modify the surface of polymeric samples. In this novel and innovative technique neutral hydrogen projectiles with appropriate kinetic energy are produced to generate carbon radicals on the impacted surface through the collision-induced C-H bond breaking. Subsequently, this phenomenon results in cross-linking hydrocarbon chains in the treated polymeric samples.

Verifying the validity of cross-linking process through experiments is the target of first part of presented dissertation. Spin-coated poly(methyl methacrylate) (PMMA) films on silicon wafer were exposed to hydrogen projectiles for different durations, while the other conditions related …


Fabricating Cost-Effective Nanostructures For Biomedical Applications, Erden Ertorer Sep 2013

Fabricating Cost-Effective Nanostructures For Biomedical Applications, Erden Ertorer

Electronic Thesis and Dissertation Repository

In this thesis we described inexpensive alternatives to fabricate nanostructures on planar substrates and provided example applications to discuss the efficiency of fabricated nanostructures.

The first method we described is forming large area systematically changing multi-shape nanoscale structures on a chip by laser interference lithography. We analyzed the fabricated structures at different substrate positions with respect to exposure time, exposure angle and associated light intensity profile. We presented experimental details related to the fabrication of symmetric and biaxial periodic nanostructures on photoresist, silicon surfaces, and ion-milled glass substrates. Behavior of osteoblasts and osteoclasts on the nanostructures was investigated. These results …


Fully Coupled Fluid And Electrodynamic Modeling Of Plasmas: A Two-Fluid Isomorphism And A Strong Conservative Flux-Coupled Finite Volume Framework, Richard Joel Thompson Aug 2013

Fully Coupled Fluid And Electrodynamic Modeling Of Plasmas: A Two-Fluid Isomorphism And A Strong Conservative Flux-Coupled Finite Volume Framework, Richard Joel Thompson

Doctoral Dissertations

Ideal and resistive magnetohydrodynamics (MHD) have long served as the incumbent framework for modeling plasmas of engineering interest. However, new applications, such as hypersonic flight and propulsion, plasma propulsion, plasma instability in engineering devices, charge separation effects and electromagnetic wave interaction effects may demand a higher-fidelity physical model. For these cases, the two-fluid plasma model or its limiting case of a single bulk fluid, which results in a single-fluid coupled system of the Navier-Stokes and Maxwell equations, is necessary and permits a deeper physical study than the MHD framework. At present, major challenges are imposed on solving these physical models …


Numerical Analysis And Theory Of Oblique Alfvenic Solitons Observed In The Interplanetary Magnetic Field, Harry Raphael Wheeler Iv Aug 2013

Numerical Analysis And Theory Of Oblique Alfvenic Solitons Observed In The Interplanetary Magnetic Field, Harry Raphael Wheeler Iv

Doctoral Dissertations and Master's Theses

Recently, there have been reports of small magnetic pulses or bumps in the interplanetary magnetic field observed by various spacecraft. Most of these reports claim that these localized pulses or bumps are solitons. Solitons are weakly nonlinear localized waves that tend to retain their form as they propagate and can be observed in various media which exhibit nonlinear steepening and dispersive effects. This thesis expands the claim that these pulses or bumps are nonlinear oblique Alfven waves with soliton components, through the application of analytical techniques used in the inverse scattering transform in a numerical context and numerical integration of …


Controllability Of Open Quantum Optical Systems: Photon Fock States In A Cavity, Byron Henry Lowry Aug 2013

Controllability Of Open Quantum Optical Systems: Photon Fock States In A Cavity, Byron Henry Lowry

Doctoral Dissertations and Master's Theses

There has always been a signicant interest in using optical systems to control quantum phenomena. A major barrier to controllability of quantum optical systems is the fact that the systems are usually innite dimensional open systems, two cases which have mostly negative controllability results. This thesis develops three new denitions of controllability and reformulates a previous controllability theorem in order to apply the theorem to the system of interest. Then, the controllability of a pumped dissipative quantum optical cavity with engineered decoherence is investigated using previously developed concepts in quantum control theory, as well as the ones developed in this …


Study Of A Non-Equilibrium Plasma Pinch With Application For Microwave Generation, Ahmad Al Agry Aug 2013

Study Of A Non-Equilibrium Plasma Pinch With Application For Microwave Generation, Ahmad Al Agry

UNLV Theses, Dissertations, Professional Papers, and Capstones

The Non-Equilibrium Plasma Pinch (NEPP), also known as the Dense Plasma Focus (DPF) is well known as a source of energetic ions, relativistic electrons and neutrons as well as electromagnetic radiation extending from the infrared to X-ray. In this dissertation, the operation of a 15 kJ, Mather type, NEPP machine is studied in detail. A large number of experiments are carried out to tune the machine parameters for best performance using helium and hydrogen as filling gases. The NEPP machine is modified to be able to extract the copious number of electrons generated at the pinch. A hollow anode with …


Simulation Of Electronic Processes Of Nanoenergetic Gas Generator Using Cabrera Mott Oxidation Model, Zamart Ramazanova Jun 2013

Simulation Of Electronic Processes Of Nanoenergetic Gas Generator Using Cabrera Mott Oxidation Model, Zamart Ramazanova

Theses and Dissertations - UTB/UTPA

This research study is a theoretical framework for understanding rapid thermal processes which occur during the performance of new Nanoenergetic Gas-Generators (NGG) systems that rapidly release a large amount of gaseous products and generate a fast-moving thermal wave during the explosion. The kinetics of rapid oxidation of metal nanoparticles acquires practical importance with the quickly developing nanoenergetic systems. The thin film oxidation theory of Cabrera-Mott model was examined for a spherically symmetric case and used to analyze the physical importance of the exothermic processes for prediction of the reaction time and front velocity. A rapid kinetic of oxide growth on …


Organic Solar Cells Based On High Dielectric Constant Materials: An Approach To Increase Efficiency, Khalil Jumah Tawfiq Hamam Jun 2013

Organic Solar Cells Based On High Dielectric Constant Materials: An Approach To Increase Efficiency, Khalil Jumah Tawfiq Hamam

Dissertations

The efficiency of organic solar cells still lags behind inorganic solar cells due to their low dielectric constant which results in a weakly screened columbic attraction between the photogenerated electron-hole system, therefore the probability of charge separating is low. Having an organic material with a high dielectric constant could be the solution to get separated charges or at least weakly bounded electron-hole pairs. Therefore, high dielectric constant materials have been investigated and studied by measuring modified metal-phthalocyanine (MePc) and polyaniline in pellets and thin films. The dielectric constant was investigated as a function of temperature and frequency in the range …


Experimenting With Polymer Blend Solar Cells And Active Layer Thickness, Ryan Blumenthal May 2013

Experimenting With Polymer Blend Solar Cells And Active Layer Thickness, Ryan Blumenthal

Physics

Bulk heterojunction organic photovoltaics utilize the electrical characteristics of semi-conductive polymers. These solution processable materials are beneficial because of their low material cost, light weight, and simple fabrication requirements. Our devices employ multiple photoactive polymers, P3HT and PCPDTBT, to absorb photons over a wide spectral range. We optimized various device characteristics including thickness and thermal anneal usage to reach a power conversion efficiency of 3.0% in AM1.5 sunlight. Device performance degrades over time due to atmospheric water and oxygen, prompting us to investigate device packaging to extend cell lifetime for additional testing.


Engineered Interfaces And Nano-Scale Thin Films For Solid Oxide Fuel Cell Electrolytes, Manjula I. Nandasiri Apr 2013

Engineered Interfaces And Nano-Scale Thin Films For Solid Oxide Fuel Cell Electrolytes, Manjula I. Nandasiri

Dissertations

Solid state electrolytes with high oxygen ionic conductivity at low temperatures are required to develop cost effective and efficient solid oxide fuel cells. This study investigates the influence of engineered interfaces on the oxygen ionic conductivity of nano-scale multilayer thin film electrolytes. The epitaxial Sm2O3 doped CeO2 (SDC) and Sc2O3 stabilized ZrO2 (ScSZ) are selected as the alternative layers for the proposed multilayer thin film electrolyte based on the optimum structural, chemical, and electrical properties reported in the previous studies. The epitaxial SDC(111)/ScSZ(111) multilayer thin films are grown on high …


Localized Surface Plasmon Resonance Induced Structure-Property Relationships Of Metal Nanostructures, Subramanian Vilayurganapathy Apr 2013

Localized Surface Plasmon Resonance Induced Structure-Property Relationships Of Metal Nanostructures, Subramanian Vilayurganapathy

Dissertations

The confluence of nanotechnology and plasmonics has led to new and interesting phenomena. The industrial need for fast, efficient and miniature devices which constantly push the boundaries on device performance tap into the happy marriage between these diverse fields. Designing devices for real life application that give superior performance when compared with existing ones are enabled by a better understanding of their structure-property relationships. Among all the design constraints, without doubt, the shape and size of the nanostructure along with the dielectric medium surrounding it has the maximum influence on the response and thereby the performance of the device. Hence …


Multipactor Discharge In High Power Microwave Systems: Analyzing Effects And Mitigation Through Simulation In Icepic, Robert L. Lloyd Mar 2013

Multipactor Discharge In High Power Microwave Systems: Analyzing Effects And Mitigation Through Simulation In Icepic, Robert L. Lloyd

Theses and Dissertations

Single surface multipactor in high power microwave systems was investigated computationally and analytically. The research focused upon understanding the cause and parametric dependence of the multipactor process leading to suggested methods of mitigation. System damage due to reaction was also assessed. All simulations were performed using the PIC code developed by AFRL, known as ICEPIC. In recreating the susceptibility curves that define regions of multipactor growth and decay, a discrepancy was found between previous published results and those observed in the current simulation. This was attributed to previous simulations not accounting for the magnetic component in the electromagnetic radiation incident …


An Investigation Into Dual-Axis Solar Tracking, Daniel Spaizman Mar 2013

An Investigation Into Dual-Axis Solar Tracking, Daniel Spaizman

Physics

This senior project aims to determine a) if using a controlled photon-tracking system does produce greater voltage output than a fixed panel and b) by how much, if so. To do this, I built a dual-axis solar tracker using a small solar panel, some stepper motors, and an Arduino Uno. The majority of my time was spent familiarizing myself with the electrical components and fabricating the device. To test the performance of the panel, the leads of the solar panel were attached to the Arduino to record the output voltages. Two experiments were carried out to discover the answers to …


Robust Control Methods For Nonlinear Systems With Uncertain Dynamics And Unknown Control Direction, Chau T. Ton Jan 2013

Robust Control Methods For Nonlinear Systems With Uncertain Dynamics And Unknown Control Direction, Chau T. Ton

Doctoral Dissertations and Master's Theses

Robust nonlinear control design strategies using sliding mode control (SMC) and integral SMC (ISMC) are developed, which are capable of achieving reliable and accurate tracking control for systems containing dynamic uncertainty, unmodeled disturbances, and actuator anomalies that result in an unknown and time-varying control direction. In order to ease readability of this dissertation, detailed explanations of the relevant mathematical tools is provided, including stability denitions, Lyapunov-based stability analysis methods, SMC and ISMC fundamentals, and other basic nonlinear control tools. The contributions of the dissertation are three novel control algorithms for three different classes of nonlinear systems: single-input multipleoutput (SIMO) systems, …


Nonlinear Control For Dual Quaternion Systems, William D. Price Jan 2013

Nonlinear Control For Dual Quaternion Systems, William D. Price

Doctoral Dissertations and Master's Theses

The motion of rigid bodies includes three degrees of freedom (DOF) for rotation, generally referred to as roll, pitch and yaw, and 3 DOF for translation, generally described as motion along the x, y and z axis, for a total of 6 DOF. Many complex mechanical systems exhibit this type of motion, with constraints, such as complex humanoid robotic systems, multiple ground vehicles, unmanned aerial vehicles (UAVs), multiple spacecraft vehicles, and even quantum mechanical systems. These motions historically have been analyzed independently, with separate control algorithms being developed for rotation and translation. The goal of this research is to study …


A Tunable Electromagnetic Band-Gap Microstrip Filter, Greg A. Lancaster Jan 2013

A Tunable Electromagnetic Band-Gap Microstrip Filter, Greg A. Lancaster

Master's Theses

In high frequency design, harmonic suppression is a persistent struggle. Non-linear devices such as switches and amplifiers produce unwanted harmonics which may interfere with other frequency bands. Filtering is a widely accepted solution, however there are various shortcomings involved. Suppressing multiple harmonics, if desired, with traditional lumped element and distributed component band-stop filters requires using multiple filters. These topologies are not easily made tunable either. A new filter topology is investigated called Electromagnetic Band-Gap (EBG) structures.

EBG structures have recently gained the interest of microwave designers due to their periodic nature which prohibits the propagation of certain frequency bands. EBG …


Computational Fluid Dynamics (Cfd) Modeling Of A Laboratory Scale Coal Gasifier, Kiel S. Schultheiss Jan 2013

Computational Fluid Dynamics (Cfd) Modeling Of A Laboratory Scale Coal Gasifier, Kiel S. Schultheiss

Electronic Theses and Dissertations

Furthering gasification technology is an essential part of advancing clean coal technologies. In order to seek insight into the appropriate operations for the formation of synthetic gas (syngas) a numerical simulation was performed to predict the phenomena of coal gasification in a laboratory scale entrained-flow coal gasifier. The mesh for the model was developed with ICEM CFD software and the chemical and physical phenomena were modeled using the fluid flow solver ANSYS FLUENT. Mesh independence was verified. The model was validated with experimental data from several studies performed on a laboratory scale gasifier.

Systematic examination of the model was performed …