Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 12 of 12

Full-Text Articles in Physical Sciences and Mathematics

In Vacuo Fabrication And Electronic Structure Characterization Of Atomic Layer Deposition Thin Films, Michael Schaefer Nov 2015

In Vacuo Fabrication And Electronic Structure Characterization Of Atomic Layer Deposition Thin Films, Michael Schaefer

USF Tampa Graduate Theses and Dissertations

Improvement of novel electronic devices is possible by tailor-designing the electronic structure at device interfaces. Common problems observed at interfaces are related to unwanted band alignment caused by the chemical diversity of interface partners, influencing device performance negatively. One way to address this problem is by introducing ultra-thin interfacial dipole layers, steering the band alignment in a desired direction. The requirements are strict in terms of thickness, conformity and low density of defects, making sophisticated deposition techniques necessary. Atomic layer deposition (ALD) with its Ångstrom-precise thickness control can fulfill those requirements.

The work presented here encompasses the implementation of an …


Tin Nanoparticles Encapsulated In Hollow Tio2 Spheres As High Performance Anode Materials For Li-Ion Batteries, Xiang Pan Aug 2015

Tin Nanoparticles Encapsulated In Hollow Tio2 Spheres As High Performance Anode Materials For Li-Ion Batteries, Xiang Pan

Theses and Dissertations

Tin, an anode material with a high capacity for lithium-ion batteries, has poor cyclic performance because of the high volume expansion upon lithiation. Based on a literature review of the applications of lithium-ion batteries and current research progress of the tin-based anode materials for lithium-ion batteries, we developed a method to synthesize hollow TiO2 spheres with tin nanoparticles anchored on the inner surface of the TiO2 shell. Such a unique tin/TiO2 composite alleviates the volume change of tin–based anode materials in charge-discharge processes. SnCl2·2H2O (Tin (II) chloride dihydrate) and titanium (IV) isopropoxide (TIPT) were used as the Sn source and …


Nanoparticle Plasmonics: Going Practical With Transition Metal Nitrides, U. Guler, V. M. Shalaev, A. Boltasseva Apr 2015

Nanoparticle Plasmonics: Going Practical With Transition Metal Nitrides, U. Guler, V. M. Shalaev, A. Boltasseva

U. Guler

Promising designs and experimental realizations of devices with unusual properties in the field of plasmonics have attracted a great deal of attention over the past few decades. However, the high expectations for realized technology products have not been met so far. The main complication is the absence of robust, high performance, low cost plasmonic materials that can be easily integrated into already established technologies such as microelectronics. This review provides a brief discussion on alternative plasmonic materials for localized surface plasmon applications and focuses on transition metal nitrides, in particular, titanium nitride, which has recently been shown to be a …


Real-Time Mri-Guided Catheter Tracking Using Hyperpolarized Silicon Particles, Nicholas Whiting, Jingzhe Hu, Jay V. Shah, Maja C. Cassidy, Erik Cressman, Niki Zacharias Millward, David G. Menter, Charles M. Marcus, Pratip K. Bhattacharya Jan 2015

Real-Time Mri-Guided Catheter Tracking Using Hyperpolarized Silicon Particles, Nicholas Whiting, Jingzhe Hu, Jay V. Shah, Maja C. Cassidy, Erik Cressman, Niki Zacharias Millward, David G. Menter, Charles M. Marcus, Pratip K. Bhattacharya

Nicholas Whiting

Visualizing the movement of angiocatheters during endovascular interventions is typically accomplished using x-ray fluoroscopy. There are many potential advantages to developing magnetic resonance imaging-based approaches that will allow three-dimensional imaging of the tissue/vasculature interface while monitoring other physiologically-relevant criteria, without exposing the patient or clinician team to ionizing radiation. Here we introduce a proof-of-concept development of a magnetic resonance imaging-guided catheter tracking method that utilizes hyperpolarized silicon particles. The increased signal of the silicon particles is generated via low-temperature, solid-state dynamic nuclear polarization, and the particles retain their enhanced signal for ≥40 minutes—allowing imaging experiments over extended time durations. The …


Nanomedicine, Mark Tuominen Jan 2015

Nanomedicine, Mark Tuominen

Nanotechnology Teacher Summer Institutes

An overview of nanomedicine. The end goal of nanomedicine is improved diagnostics, treatment and prevention of disease. Nanotechnology holds key to a number of recent and future breakthroughs in medicine.


Controllable Synthesis Of Concave Cubic Gold Core-Shell Nanoparticles For Plasmon-Enhanced Photon Harvesting, Yang Bai, Teera Butburee, Hua Yu, Zhen Li, Rose Amal, Gao Qing (Max) Lu, Lianzhou Wang Jan 2015

Controllable Synthesis Of Concave Cubic Gold Core-Shell Nanoparticles For Plasmon-Enhanced Photon Harvesting, Yang Bai, Teera Butburee, Hua Yu, Zhen Li, Rose Amal, Gao Qing (Max) Lu, Lianzhou Wang

Australian Institute for Innovative Materials - Papers

Well-defined core-shell nanoparticles (NPs) containing concave cubic Au cores and TiO2 shells (CA@T) were synthesized in colloidal suspension. These CA@T NPs exhibit Localized Surface Plasmon Resonance (LSPR) absorption in the NIR region, which provides a unique property for utilizing the low energy range of the solar spectrum. In order to evaluate the plasmonic enhancement effect, a variety of CA@T NPs were incorporated into working electrodes of dye-sensitized solar cells (DSSCs). By adjusting the shell thickness of CA@T NPs, the plasmonic property can be tuned to achieve maximum photovoltaic improvement. Furthermore, the DSSC cells fabricated with the CA@T NPs exhibit …


Characterization Of Metallic And Semimetallic Oxide Nanoparticles In Industrial Wastewater And Associated Toxicity, Gary Roth Jan 2015

Characterization Of Metallic And Semimetallic Oxide Nanoparticles In Industrial Wastewater And Associated Toxicity, Gary Roth

Legacy Theses & Dissertations (2009 - 2024)

Engineered nanomaterials (ENMs) play an increasing role in manufacturing and consumer products. Currently, there is no standard approach to studying ENM toxicity, and a growing body of literature suggests that ENMs may have toxicity differing from similar compounds in bulk or dissolved form. I examined ENMs used in the semiconductor manufacturing process called chemical-mechanical planarization (CMP) for their properties, removal in the wastewater treatment system (WWT), in-vitro toxicity, and location post-inhalation in-vivo. It was found that ENMs in CMP slurries have morphology determined by their elemental composition, but assessment of size and concentration can differ substantially between accepted techniques. Particles …


Can The Wet - State Conductivity Of Hydrogels Be Improved By Incorporation Of Spherical Conducting Nanoparticles?, Katharina Schirmer, Cody Wright, Holly Warren, Brianna C. Thompson, Anita F. Quigley, Robert M. I Kapsa, Gordon G. Wallace Jan 2015

Can The Wet - State Conductivity Of Hydrogels Be Improved By Incorporation Of Spherical Conducting Nanoparticles?, Katharina Schirmer, Cody Wright, Holly Warren, Brianna C. Thompson, Anita F. Quigley, Robert M. I Kapsa, Gordon G. Wallace

Australian Institute for Innovative Materials - Papers

In nerve and muscle regeneration applications, the incorporation of conducting elements into biocompatible materials has gained interest over the last few years, as it has been shown that electrical stimulation of some regenerating cells has a positive effect on their development. A variety of different materials, ranging from graphene to conducting polymers, have been incorporated into hydrogels and increased conductivities have been reported. However, the majority of conductivity measurements are performed in a dry state, even though material blends are designed for applications in a wet state, in vivo environment. The focus of this work is to use polypyrrole nanoparticles …


A New Strategy For Achieving A High Performance Anode For Lithium Ion Batteries-Encapsulating Germanium Nanoparticles In Carbon Nanoboxes, Dan Li, Hongqiang Wang, Hua-Kun Liu, Zaiping Guo Jan 2015

A New Strategy For Achieving A High Performance Anode For Lithium Ion Batteries-Encapsulating Germanium Nanoparticles In Carbon Nanoboxes, Dan Li, Hongqiang Wang, Hua-Kun Liu, Zaiping Guo

Australian Institute for Innovative Materials - Papers

A novel strategy to improve the electrochemical performance of a germanium anode is proposed via encapsulating germanium nanoparticles in carbon nanoboxes by carbon coating the precursor, germanium dioxide cubes, and then subjecting them to a reduction treatment. The complete and robust carbon boxes are shown to not only provide extra void space for the expansion of germanium nanoparticles after lithium insertion but also offer a large reactive area and reduced distance for the lithium diffusion. Furthermore, the thus-obtained composite, composed of densely stacked carbon nanoboxes encapsulating germanium nanoparticles (germanium at carbon cubes (Ge at CC)), exhibits a high tap density …


One-Pot Synthesis Of Ultra-Small Magnetite Nanoparticles On The Surface Of Reduced Graphene Oxide Nanosheets As Anodes For Sodium-Ion Batteries, Shaohua Zhang, Weijie Li, Bien Tan, Shulei Chou, Zhen Li, S X. Dou Jan 2015

One-Pot Synthesis Of Ultra-Small Magnetite Nanoparticles On The Surface Of Reduced Graphene Oxide Nanosheets As Anodes For Sodium-Ion Batteries, Shaohua Zhang, Weijie Li, Bien Tan, Shulei Chou, Zhen Li, S X. Dou

Australian Institute for Innovative Materials - Papers

Nanocomposites with ultra-small magnetite (Fe3O4) nanoparticles (approx. 3 nm) uniformly anchored on the surfaces of reduced graphene oxide (RGO) nanosheets were successfully synthesized for anodes in sodium-ion batteries by a novel single-step high-temperature coprecipitation approach. The best electrode delivers a reversible Na+ storage capacity of 204 mA h g-1 with excellent capacity retention, i.e., 98% of the second-cycle value was retained after 200 cycles.


Inhalable Nanocomposites And Anticancer Agents For Cancer Therapy, Nathanael A. Stocke Jan 2015

Inhalable Nanocomposites And Anticancer Agents For Cancer Therapy, Nathanael A. Stocke

Theses and Dissertations--Chemical and Materials Engineering

Cancer is designated as the leading cause of mortality worldwide and lung cancer is responsible for nearly 30% of all cancer related deaths. Over the last few decades mortality rates have only marginally increased and rates of recurrence remain high. These factors, among others, suggest the need for more innovative treatment modalities in lung cancer therapy. Targeted pulmonary delivery is well established for treating pulmonary diseases such as asthma and provides a promising platform for lung cancer therapy. Increasing local deposition of anticancer agents (ACAs) and reducing systemic exposure of these toxic moieties could lead to better therapeutic outcomes and …


Enhanced Magnetoimpedance And Microwave Absorption Responses Of Soft Ferromagnetic Materials For Biodetection And Energy Sensing, Jagannath Devkota Jan 2015

Enhanced Magnetoimpedance And Microwave Absorption Responses Of Soft Ferromagnetic Materials For Biodetection And Energy Sensing, Jagannath Devkota

USF Tampa Graduate Theses and Dissertations

A combination of magnetic sensors with magnetic nanoparticles offers a promising approach for highly sensitive, simple, and rapid detection of cancer cells and biomolecules. The challenge facing the field of magnetic biosensing is the development of low-cost devices capable of superconducting quantum interference device (SQUID)-like field sensitivity at room temperature. In another area of interest, improving the sensitivity of existing electromagnetic field sensors for microwave energy sensing applications is an important and challenging task. In this dissertation, we have explored the excellent magnetoimpedance and microwave absorption responses of soft ferromagnetic amorphous ribbons and microwires for the development of high-performance magnetic …