Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 21 of 21

Full-Text Articles in Physical Sciences and Mathematics

An Experimental Investigation Towards Improvement Of Thermoelectric Properties Of Strontium Titanate Ceramics, Arash Mehdizadeh Dehkordi Aug 2014

An Experimental Investigation Towards Improvement Of Thermoelectric Properties Of Strontium Titanate Ceramics, Arash Mehdizadeh Dehkordi

All Dissertations

The direct energy conversion between heat and electricity based on thermoelectric effects is a topic of long-standing interest in condensed matter materials science. Experimental and theoretical investigations in order to understand the mechanisms involved and to improve the materials properties and conversion efficiency have been ongoing for more than half a century. While significant achievements have been accomplished in improving the properties of conventional heavy element based materials (such as Bi$_2$Te$_3$ and PbTe) as well as the discovery of new materials systems for the close-to-room temperature and intermediate temperatures, high-temperature applications of thermoelectrics is still limited to one materials system, …


Quantitative Analysis Of Structure And Bandgap Changes In Graphene Oxide Nanoribbons During Thermal Annealing, Yu Zhu, Xianyu Li, Qinjia Cai, Zhengzong Sun, Gilberto Casillas, Miguel Jose-Yacaman, Rafael Verduzco, James Tour May 2014

Quantitative Analysis Of Structure And Bandgap Changes In Graphene Oxide Nanoribbons During Thermal Annealing, Yu Zhu, Xianyu Li, Qinjia Cai, Zhengzong Sun, Gilberto Casillas, Miguel Jose-Yacaman, Rafael Verduzco, James Tour

Yu Zhu

Graphene oxide nanoribbons (GONRs) are wide bandgap semiconductors that can be reduced to metallic graphene nanoribbons. The transformation of GONRs from their semiconductive to the metallic state by annealing has attracted significant interest due to its simplicity. However, the detailed process by which GONRs transform from widebandgap semiconductors to semimetals with a near zero bandgap is unclear. As a result, precise control of the bandgap between these two states is not currently achievable. Here, we quantitatively examine the removal of oxygen-containing groups and changes in the bandgap during thermal annealing of GONRs. X-ray photoelectron spectroscopy measurements show the progressive removal …


Aqueous Dispersions Of Reduced Graphene Oxide And Multi Wall Carbon Nanotubes For Enhanced Glucose Oxidase Bioelectrode Performance, Willo Grosse, Joffrey Champavert, Sanjeev Gambhir, Gordon G. Wallace, Simon E. Moulton Mar 2014

Aqueous Dispersions Of Reduced Graphene Oxide And Multi Wall Carbon Nanotubes For Enhanced Glucose Oxidase Bioelectrode Performance, Willo Grosse, Joffrey Champavert, Sanjeev Gambhir, Gordon G. Wallace, Simon E. Moulton

Gordon Wallace

Aqueous dispersions of reduced graphene oxide (rGO) and multi walled carbon nanotubes (MWCNT) were fabricated through a modified chemical reduction method. The significant advantage of the method developed here is the omission of any stabilising compound or organic solvent to obtain stable rGO-MWCNT dispersions. Significantly biological entities, in this case the enzyme glucose oxidase (GOx), can be successfully incorporated into the dispersion. These dispersions were characterised using XPS, SEM, zeta potential and particle size measurements which showed that the dispersion stability is not sacrificed with the addition of GOx, and significantly, the electrical properties of the rGO and MWCNTs are …


Facile Synthesis Of Reduced Graphene Oxide/Mwnts Nanocomposite Supercapacitor Materials Tested As Electrophoretically Deposited Films On Glassy Carbon Electrodes, Widsanusan Chartarrayawadee, Simon E. Moulton, Chee O. Too, Byung C. Kim, Rao Yepuri, Anthony C. Romeo, Gordon G. Wallace Mar 2014

Facile Synthesis Of Reduced Graphene Oxide/Mwnts Nanocomposite Supercapacitor Materials Tested As Electrophoretically Deposited Films On Glassy Carbon Electrodes, Widsanusan Chartarrayawadee, Simon E. Moulton, Chee O. Too, Byung C. Kim, Rao Yepuri, Anthony C. Romeo, Gordon G. Wallace

Gordon Wallace

This paper reports on a facile synthesis method for reduced graphene oxide (rGO)/multi-walled carbon nanotubes (MWNTs) nanocomposites. The initial step involves the use of graphene oxide to disperse the MWNTs, with subsequent reduction of the resultant graphene oxide/MWNTs composites using l-ascorbic acid (LAA) as a mild reductant. Reduction by LAA preserves the interaction between the rGO sheets and MWNTs. The dispersion-containing rGO/MWNTs composites was characterized and electrophoretically deposited anodically onto glassy carbon electrodes to form high surface area films for capacitance testing. Pseudo capacitance peaks were observed in the rGO/MWNTs composite electrodes, resulting in superior performance with capacitance values up …


Scalable One-Step Wet-Spinning Of Graphene Fibers And Yarns From Liquid Crystalline Dispersions Of Graphene Oxide: Towards Multifunctional Textiles, Rouhollah Jalili, Seyed Hamed Aboutalebi, Dorna Esrafilzadeh, Roderick L. Shepherd, Jun Chen, Sima Aminorroaya-Yamini, Konstantin Konstantinov, Andrew I. Minett, Joselito M. Razal, Gordon G. Wallace Mar 2014

Scalable One-Step Wet-Spinning Of Graphene Fibers And Yarns From Liquid Crystalline Dispersions Of Graphene Oxide: Towards Multifunctional Textiles, Rouhollah Jalili, Seyed Hamed Aboutalebi, Dorna Esrafilzadeh, Roderick L. Shepherd, Jun Chen, Sima Aminorroaya-Yamini, Konstantin Konstantinov, Andrew I. Minett, Joselito M. Razal, Gordon G. Wallace

Gordon Wallace

Key points in the formation of liquid crystalline (LC) dispersions of graphene oxide (GO) and their processability via wet-spinning to produce long lengths of micrometer-dimensional fibers and yarns are addressed. Based on rheological and polarized optical microscopy investigations, a rational relation between GO sheet size and polydispersity, concentration, liquid crystallinity, and spinnability is proposed, leading to an understanding of lyotropic LC behavior and fiber spinnability. The knowledge gained from the straightforward formulation of LC GO "inks" in a range of processable concentrations enables the spinning of continuous conducting, strong, and robust fibers at concentrations as low as 0.075 wt%, eliminating …


Carbon Nanotube-Reduced Graphene Oxide Composites For Thermal Energy Harvesting Applications, Mark S. Romano, Na Li, Dennis Antiohos, Joselito M. Razal, Andrew Nattestad, Stephen Beirne, Shaoli Fang, Yongsheng Chen, Rouhollah Jalili, Gordon G. Wallace, Ray Baughman, Jun Chen Mar 2014

Carbon Nanotube-Reduced Graphene Oxide Composites For Thermal Energy Harvesting Applications, Mark S. Romano, Na Li, Dennis Antiohos, Joselito M. Razal, Andrew Nattestad, Stephen Beirne, Shaoli Fang, Yongsheng Chen, Rouhollah Jalili, Gordon G. Wallace, Ray Baughman, Jun Chen

Gordon Wallace

By controlling the SWNT-rGO electrode composition and thickness to attain the appropriate porosity and tortuosity, the electroactive surface area is maximized while rapid diffusion of the electrolyte through the electrode is maintained. This leads to an increase in exchange current density between the electrode and electrolyte which results in enhanced thermocell performance.


Organic Solvent-Based Graphene Oxide Liquid Crystals: A Facile Route Toward The Next Generation Of Self-Assembled Layer-By-Layer Multifunctional 3d Architectures, Rouhollah Jalili, Seyed Hamed Aboutalebi, Dorna Esrafilzadeh, Konstantin Konstantinov, Simon E. Moulton, Joselito M. Razal, Gordon G. Wallace Mar 2014

Organic Solvent-Based Graphene Oxide Liquid Crystals: A Facile Route Toward The Next Generation Of Self-Assembled Layer-By-Layer Multifunctional 3d Architectures, Rouhollah Jalili, Seyed Hamed Aboutalebi, Dorna Esrafilzadeh, Konstantin Konstantinov, Simon E. Moulton, Joselito M. Razal, Gordon G. Wallace

Gordon Wallace

We introduce soft self-assembly of ultralarge liquid crystalline (LC) graphene oxide (GO) sheets in a wide range of organic solvents overcoming the practical limitations imposed on LC GO processing in water. This expands the number of known solvents which can support amphiphilic self-assembly to ethanol, acetone, tetrahydrofuran, N-dimethylformamide, N-cyclohexyl-2-pyrrolidone, and a number of other organic solvents, many of which were not known to afford solvophobic self-assembly prior to this report. The LC behavior of the as-prepared GO sheets in organic solvents has enabled us to disperse and organize substantial amounts of aggregate-free single-walled carbon nanotubes (SWNTs, up to 10 wt …


Manganosite-Microwave Exfoliated Graphene Oxide Composites For Asymmetric Supercapacitor Device Applications, Dennis Antiohos, Kanlaya Pingmuang, Mark Romano, Stephen Beirne, Tony C. Romeo, Phil Aitchison, Andrew I. Minett, Gordon G. Wallace, Sukon Phanichphant, Jun Chen Mar 2014

Manganosite-Microwave Exfoliated Graphene Oxide Composites For Asymmetric Supercapacitor Device Applications, Dennis Antiohos, Kanlaya Pingmuang, Mark Romano, Stephen Beirne, Tony C. Romeo, Phil Aitchison, Andrew I. Minett, Gordon G. Wallace, Sukon Phanichphant, Jun Chen

Gordon Wallace

Graphene based materials coupled with transition metal oxides are promising electrode materials in asymmetric supercapacitors owing to their unique properties which include high surface area, good chemical stability, electrical conductivity, abundance, and lower cost profile over time. In this paper a composite material consisting of graphene oxide exfoliated with microwave radiation (mw rGO), and manganosite (MnO) is synthesised in order to explore their potential as an electrode material. The composite material was characterised by scanning electron microscopy (SEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and Raman spectroscopy. Cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) were used to explore …


Cation Exchange At Semiconducting Oxide Surfaces: Origin Of Light-Induced Performance Increases In Porphyrin Dye-Sensitized Solar Cells, Matthew J. Griffith, Kenji Sunahara, Akihiro Furube, Attila J. Mozer, David L. Officer, Pawel Wagner, Gordon G. Wallace, Shogo Mori Mar 2014

Cation Exchange At Semiconducting Oxide Surfaces: Origin Of Light-Induced Performance Increases In Porphyrin Dye-Sensitized Solar Cells, Matthew J. Griffith, Kenji Sunahara, Akihiro Furube, Attila J. Mozer, David L. Officer, Pawel Wagner, Gordon G. Wallace, Shogo Mori

Gordon Wallace

The origin of simultaneous improvements in the short-circuit current density (Jsc) and open-circuit voltage (Voc) of porphyrin dye-sensitized TiO2 solar cells following white light illumination was studied by systematic variation of several different device parameters. Reduction of the dye surface loading resulted in greater relative performance enhancements, suggesting open space at the TiO2 surface expedites the process. Variation of the electrolyte composition and subsequent analysis of the conduction band potential shifts suggested that a light-induced replacement of surface-adsorbed lithium (Li+) ions with dimethylpropylimidazolium (DMPIm+) ions was responsible for an increased electron lifetime by decreasing the recombination with the redox mediator. …


Reduced Graphene Oxide With Superior Cycling Stability And Rate Capability For Sodium Storage, Yunxiao Wang, Shulei Chou, Hua-Kun Liu, S X. Dou Mar 2014

Reduced Graphene Oxide With Superior Cycling Stability And Rate Capability For Sodium Storage, Yunxiao Wang, Shulei Chou, Hua-Kun Liu, S X. Dou

Shi Xue Dou

Sodium ion battery is a promising electrical energy storage system for sustainable energy storage applications due to the abundance of sodium resources and their low cost. In this communication, the electrochemical properties of sodium ion storage in reduced graphene oxide (RGO) were studied in an electrolyte consisting of 1 M NaClO4 in propylene carbonate (PC). The experimental results show that the RGO anode allowed significant sodium ion insertion, leading to higher capacity at high current density compared to the previously reported results for carbon materials. This is due to the fact that RGO possesses higher electrical conductivity and is a …


A Facile Route To Synthesize Transition Metal Oxide/Reduced Graphene Oxide Composites And Their Lithium Storage Performance, Chongjun Zhao, Shulei Chou, Yunxiao Wang, Cuifeng Zhou, Hua-Kun Liu, S X. Dou Mar 2014

A Facile Route To Synthesize Transition Metal Oxide/Reduced Graphene Oxide Composites And Their Lithium Storage Performance, Chongjun Zhao, Shulei Chou, Yunxiao Wang, Cuifeng Zhou, Hua-Kun Liu, S X. Dou

Shi Xue Dou

Transition metal oxide (Mn3O4, Fe2O3, Co3O4, and ZnO) and reduced graphene oxide (RGO) composites were successfully synthesized via a hydrothermal method using the direct reaction between the corresponding metal powder and graphene oxide (GO). In this process, the GO can be reduced by transition metal powder in water, and the nanosized metal oxide can be obtained, and homogeneously mixed with and wrapped by RGO to form a metal oxide/RGO composite at the same time. X-ray diffraction, Raman spectroscopy, X-ray photoelectron spectroscopy, and scanning and transmission electron microscopy were used to characterize the as-prepared materials. The different experimental parameters, including reactants, …


The Electrochemical Properties Of High-Capacity Sulfur/Reduced Graphene Oxide With Different Electrolyte Systems, Yunxiao Wang, Shulei Chou, Hua-Kun Liu, S X. Dou Mar 2014

The Electrochemical Properties Of High-Capacity Sulfur/Reduced Graphene Oxide With Different Electrolyte Systems, Yunxiao Wang, Shulei Chou, Hua-Kun Liu, S X. Dou

Shi Xue Dou

The lithium/sulfur battery is a promising electrochemical system with high capacity, which is well-known to undergo a complex multistep reaction during the discharge process. Two types of electrolytes including poly (ethylene glycol) dimethyl ether (PEGDME)-based and 1.3 - dioxolane (DOL)/ dimethoxyethane (DME)-based electrolytes were investigated here. Furthermore, LiNO3 additive was introduced into the electrolyte in order to effectively eliminate the overcharge effect. The lithium sulfur battery with 1.0 M LiN(CF3SO2)2 in PEGME with 0.1 M LiNo3 shows highly stable reversible capacity of 624.8 mAh g-1 after 200 cycles and improved average coulombic efficiency of 98 percent.


Liquid Crystalline Graphene Oxide/Pedot: Pss Self-Assembled 3d Architecture For Binder-Free Supercapacitor Electrodes, Md. Monirul Islam, Alfred T. Chidembo, Seyed Hamed Aboutalebi, Dean Cardillo, Hua-Kun Liu, Konstantin K. Konstantinov, S X. Dou Jan 2014

Liquid Crystalline Graphene Oxide/Pedot: Pss Self-Assembled 3d Architecture For Binder-Free Supercapacitor Electrodes, Md. Monirul Islam, Alfred T. Chidembo, Seyed Hamed Aboutalebi, Dean Cardillo, Hua-Kun Liu, Konstantin K. Konstantinov, S X. Dou

Australian Institute for Innovative Materials - Papers

Binder-free self-assembled 3D architecture electrodes have been fabricated by a novel convenient method. Liquid crystalline graphene oxide was used as precursor to interact with poly(3,4-ethylene-dioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) in dispersion in order to form a conductive polymer entrapped, self-assembled layer-by-layer structure. This advanced network containing PEDOT:PSS enabled us to ascribe the superior electrochemical properties of particular graphene sheets. This layer-by-layer self-assembled 3D architecture of best performing composite (reduced graphene oxide-PEDOT:PSS 25) showed excellent electrochemical performance of 434 F g−1 through chemical treatment. To highlight these advances, we further explored the practicality of the as-prepared electrode by varying the composite material content. …


Formation And Processability Of Liquid Crystalline Dispersion Graphene Oxide, Rouhollah Jalili, Seyed Hamed Aboutalebi, Dorna Esrafilzadeh, Konstantin Konstantinov, Joselito M. Razal, Simon E. Moulton, Gordon G. Wallace Jan 2014

Formation And Processability Of Liquid Crystalline Dispersion Graphene Oxide, Rouhollah Jalili, Seyed Hamed Aboutalebi, Dorna Esrafilzadeh, Konstantin Konstantinov, Joselito M. Razal, Simon E. Moulton, Gordon G. Wallace

Australian Institute for Innovative Materials - Papers

Rational control over the formation and processability, and consequently final properties of graphene oxide liquid crystalline dispersions has been a long-standing goal in the development of bottom-up device fabrication processes. Here we report, the principal conditions through which such levels of control can be exercised to fine-tune dispersion properties for further processing.


Graphene Oxide Dispersions: Tuning Rheology To Enable Fabrication, Sina Naficy, Rouhollah Jalili, Seyed Hamed Aboutalebi, Robert A. Gorkin Iii, Konstantin Konstantinov, Peter C. Innis, Geoffrey M. Spinks, Philippe Poulin, Gordon G. Wallace Jan 2014

Graphene Oxide Dispersions: Tuning Rheology To Enable Fabrication, Sina Naficy, Rouhollah Jalili, Seyed Hamed Aboutalebi, Robert A. Gorkin Iii, Konstantin Konstantinov, Peter C. Innis, Geoffrey M. Spinks, Philippe Poulin, Gordon G. Wallace

Australian Institute for Innovative Materials - Papers

Here, we show that graphene oxide (GO) dispersions exhibit unique viscoelastic properties, making them a new class of soft materials. The fundamental insights accrued here provide the basis for the development of fabrication protocols for these two-dimensional soft materials, in a diverse array of processing techniques.


Fabrication Of Free-Standing Hierarchical Carbon Nanofiber/Graphene Oxide/Polyaniline Films For Supercapacitors, Dongdong Xu, Qun Xu, Kaixi Wang, Jun Chen, Zhimin Chen Jan 2014

Fabrication Of Free-Standing Hierarchical Carbon Nanofiber/Graphene Oxide/Polyaniline Films For Supercapacitors, Dongdong Xu, Qun Xu, Kaixi Wang, Jun Chen, Zhimin Chen

Australian Institute for Innovative Materials - Papers

A hierarchical high-performance electrode with nanoacanthine-style polyaniline (PANI) deposited onto a carbon nanofiber/graphene oxide (CNF/GO) template was successfully prepared via an in situ polymerization process. The morphology analysis shows that introducing one-dimensional (1D) CNF could significantly decrease/inhibit the staking of laminated GO to form an open-porous CNF/GO architecture. Followed with in situ facial deposition of PANI, the as-synthesized PANI modified CNF/GO exhibits three-dimensional (3D) hierarchical layered nanoarchitecture, which favors the diffusion of the electrolyte ions into the inner region of active materials. The hierarchical free-standing electrodes were directly fabricated into sandwich structured supercapacitors using 1 M H2SO4 as the electrolyte …


A Study Of Ti-Doped Wo3 Thin Films Using Comparative Theoretical And Experimental Approach, Aurelio Paez Jan 2014

A Study Of Ti-Doped Wo3 Thin Films Using Comparative Theoretical And Experimental Approach, Aurelio Paez

Open Access Theses & Dissertations

Metal oxides like Tungsten Oxide (WO3) are well documented and characterized in the literature, with uses in darkening windows and mirrors, flat computer displays, solar panel cooling, and sensors (of interest in this study). Ti doping of WO3 is less documented and the focus of this study. Sample thin films of pure WO3 and varyingly Ti doped WO3 were prepared using Radio Frequency magnetron sputtering (RF) (13.56 MHz) to grow thin films on a silicon substrate. This study aims to compare multiple Ti doping percentages in WO3 theoretically and then compare with experimental data taken from thin films of various …


In Situ Engineering Of Urchin-Like Reduced Graphene Oxide-Mn 2o3-Mn3o4 Nanostructures For Supercapacitors, Alfred Tawirirana Chidembo, Seyed Hamed Aboutalebi, Konstantin Konstantinov, Charl Jeremy Jafta, Hua-Kun Liu, Kenneth Ikechukwu Ozoemena Jan 2014

In Situ Engineering Of Urchin-Like Reduced Graphene Oxide-Mn 2o3-Mn3o4 Nanostructures For Supercapacitors, Alfred Tawirirana Chidembo, Seyed Hamed Aboutalebi, Konstantin Konstantinov, Charl Jeremy Jafta, Hua-Kun Liu, Kenneth Ikechukwu Ozoemena

Australian Institute for Innovative Materials - Papers

We report the use of a spray pyrolysis method to synthesize high surface area (BET surface area of 139 m2 g-1) self-organized, micron sized urchin-like composites made up of reduced graphene oxide and needle-shaped manganese oxide (rGO-Mn2O3-Mn 3O4). Maximum capacitances of 425 Fg-1 at 5 mV s-1 from a three electrode set up and 133 Fg-1 at a current density of 0.2 Ag-1 were recorded using an asymmetric two electrode set up with graphene as the anode. The composite material also showed a capacitance retention of 83% over 1000 cycles. We attribute this remarkable performance to the high specific surface …


Electrochemical Nonenzymatic Sensor Based On Coo Decorated Reduced Graphene Oxide For The Simultaneous Determination Of Carbofuran And Carbaryl In Fruits And Vegetables, Mingyan Wang, Junrao Huang, Meng Wang, Dongen Zhang, Jun Chen Jan 2014

Electrochemical Nonenzymatic Sensor Based On Coo Decorated Reduced Graphene Oxide For The Simultaneous Determination Of Carbofuran And Carbaryl In Fruits And Vegetables, Mingyan Wang, Junrao Huang, Meng Wang, Dongen Zhang, Jun Chen

Australian Institute for Innovative Materials - Papers

A novel nonenzymatic sensor based on cobalt (II) oxide (CoO)-decorated reduced graphene oxide (rGO) was developed for the detection of carbofuran (CBF) and carbaryl (CBR). Two well-defined and separate differential pulse voltammetric peaks for CBF and CBR were obtained with the CoO/rGO sensor in a mixed solution, making the simultaneous detection of both carbamate pesticides possible. The nonenzymatic sensor demonstrated a linear relationship over a wide concentration range of 0.2–70 μM (R = 0.9996) for CBF and 0.5–200 μM (R = 0.9995) for CBR. The lower detection limit of the sensor was 4.2 μg/L for CBF and 7.5 μg/L for …


Performance Enhancement Of Single-Walled Nanotube-Microwave Exfoliated Graphene Oxide Composite Electrodes Using A Stacked Electrode Configuration, Dennis Antiohos, Mark S. Romano, Joselito M. Razal, Stephen Beirne, Phil Aitchison, Andrew I. Minett, Gordon G. Wallace, Jun Chen Jan 2014

Performance Enhancement Of Single-Walled Nanotube-Microwave Exfoliated Graphene Oxide Composite Electrodes Using A Stacked Electrode Configuration, Dennis Antiohos, Mark S. Romano, Joselito M. Razal, Stephen Beirne, Phil Aitchison, Andrew I. Minett, Gordon G. Wallace, Jun Chen

Australian Institute for Innovative Materials - Papers

We report the development of a stacked electrode supercapacitor cell using stainless steel meshes as the current collectors and optimised single walled nanotubes (SWNT)-microwave exfoliated graphene oxide (mw rGO) composites as the electrode material. The introduction of mw rGO into a SWNT matrix creates an intertwined porous structure that enhances the electroactive surface area and capacitive performance due to the 3-D hierarchical structure that is formed. The composite structure was optimised by varying the weight ratio of the SWNTs and mw rGO. The best performing ratio was the 90% SWNT-10% mw rGO electrode which achieved a specific capacitance of 306 …


One-Pot Synthesis Of Α-Fe2o3 Nanoparticles-Decorated Reduced Graphene Oxide For Efficient Nonenzymatic H2o2 Biosensor, Ming-Yan Wang, Tao Shen, Meng Wang, Dong-En Zhang, Zhi-Wei Tong, Jun Chen Jan 2014

One-Pot Synthesis Of Α-Fe2o3 Nanoparticles-Decorated Reduced Graphene Oxide For Efficient Nonenzymatic H2o2 Biosensor, Ming-Yan Wang, Tao Shen, Meng Wang, Dong-En Zhang, Zhi-Wei Tong, Jun Chen

Australian Institute for Innovative Materials - Papers

Hematite nanoparticles (α-Fe2O3) are successfully decorated on the reduced graphene oxide (rGO) sheets through a simple, one-step, hydrothermal method without addition of other reducing agents. The α-Fe2O3/rGO hybrid was characterized by scanning electron micrographs, X-ray diffraction, X-ray photoelectron spectroscopy, and Raman spectroscopy. This α-Fe2O3/rGO hybrid has been successfully applied in the catalytic performance toward the reduction of H2O2. The nonenzymatic sensor demonstrates a linear relationship over a wide concentration range of 5.0–4495.0 μM (R = 0.9998), a low detection limit of 1.0 μM, and a high sensitivity of 126.9 μA cm−2 mM−1 to the detection of H2O2.