Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 18 of 18

Full-Text Articles in Physical Sciences and Mathematics

Flexible Cellulose Based Polypyrrole-Multiwalled Carbon Nanotube Films For Bio-Compatible Zinc Batteries Activated By Simulated Body Fluids, Sha Li, Zai Ping Guo, Cai Yun Wang, Gordon G. Wallace, Hua-Kun Liu Mar 2014

Flexible Cellulose Based Polypyrrole-Multiwalled Carbon Nanotube Films For Bio-Compatible Zinc Batteries Activated By Simulated Body Fluids, Sha Li, Zai Ping Guo, Cai Yun Wang, Gordon G. Wallace, Hua-Kun Liu

Gordon Wallace

This work aims to develop biocompatible non-toxic materials for implantable bio-electronic cells. Polypyrrole (PPy)–carbon nanotube (CNT) composites with varied ratios of PPy to CNTs were chemically synthesized and used as cathodes with the support of cellulose paper. Zinc foil was used as the anode material due to its non-toxicity and moderate dissolution rate in aqueous solutions. Simulated body fluids (SBFs) with various protein concentrations were applied as electrolytes in this battery system. The PPy–CNT|Zn cell is capable of being discharged up to 24.5 hours at a current density of 60 μA cm−2 in a protein free SBF. The batteries have …


Facile Synthesis Of Reduced Graphene Oxide/Mwnts Nanocomposite Supercapacitor Materials Tested As Electrophoretically Deposited Films On Glassy Carbon Electrodes, Widsanusan Chartarrayawadee, Simon E. Moulton, Chee O. Too, Byung C. Kim, Rao Yepuri, Anthony C. Romeo, Gordon G. Wallace Mar 2014

Facile Synthesis Of Reduced Graphene Oxide/Mwnts Nanocomposite Supercapacitor Materials Tested As Electrophoretically Deposited Films On Glassy Carbon Electrodes, Widsanusan Chartarrayawadee, Simon E. Moulton, Chee O. Too, Byung C. Kim, Rao Yepuri, Anthony C. Romeo, Gordon G. Wallace

Gordon Wallace

This paper reports on a facile synthesis method for reduced graphene oxide (rGO)/multi-walled carbon nanotubes (MWNTs) nanocomposites. The initial step involves the use of graphene oxide to disperse the MWNTs, with subsequent reduction of the resultant graphene oxide/MWNTs composites using l-ascorbic acid (LAA) as a mild reductant. Reduction by LAA preserves the interaction between the rGO sheets and MWNTs. The dispersion-containing rGO/MWNTs composites was characterized and electrophoretically deposited anodically onto glassy carbon electrodes to form high surface area films for capacitance testing. Pseudo capacitance peaks were observed in the rGO/MWNTs composite electrodes, resulting in superior performance with capacitance values up …


Direct Synthesis Of Rgo/Cu2o Composite Films On Cu Foil For Supercapacitors, Xiangmao Dong, Kun Wang, Chongjun Zhao, Xiuzhen Qian, Shi Chen, Zhen Li, Hua-Kun Liu, S X. Dou Mar 2014

Direct Synthesis Of Rgo/Cu2o Composite Films On Cu Foil For Supercapacitors, Xiangmao Dong, Kun Wang, Chongjun Zhao, Xiuzhen Qian, Shi Chen, Zhen Li, Hua-Kun Liu, S X. Dou

Shi Xue Dou

Reduced graphene oxide/cuprous oxide (RGO/Cu2O) composite films were directly synthesized on the surface of copper foil substrates through a straight redox reaction between GO and Cu foil via a hydrothermal approach. Characterization of the resultant composites with X-ray diffraction, Raman spectroscopy, X-ray photoelectron spectroscopy, and field emission scanning electron microscope (FESEM) confirms the formation of Cu2O and reduction of GO, in which Cu2O nanoparticles were well covered by RGO. The resultant composites (referred to as RGO/Cu2O/Cu) were directly used as electrodes for supercapacitors, and their electrochemical performance was assessed by cyclic voltammetry (CV), galvanostatic charge–discharge (GCD), and electrochemical impedance spectrometry …


Thermoelectric Properties Of Ca3co4o9 And Ca2.8bi0.2co4o9 Thin Films In Their Island Formation Mode, Priyanka Jood, Germanas Peleckis, Xiaolin Wang, S X. Dou Mar 2014

Thermoelectric Properties Of Ca3co4o9 And Ca2.8bi0.2co4o9 Thin Films In Their Island Formation Mode, Priyanka Jood, Germanas Peleckis, Xiaolin Wang, S X. Dou

Shi Xue Dou

Ca3Co4O9 and Ca2.8Bi 0.2Co4O9 thin films were fabricated on LaAlO3 (LAO) substrate using pulsed laser deposition technique and were studied for their thermoelectric (TE) properties in Stranski-Krastanov mode for the first time. The thin films consisted of 3D clusters/islands on a 14-nm thick 2D layer with cluster density being higher for Ca 2.8Bi0.2Co4O9 thin films. The clusters also represent areas of dislocation and therefore act as carrier scattering centers, which leads to a temperature-activated type conductivity. Seebeck coefficient as high as 136 and 163 u V/K was measured for the Ca 3Co4O9 and Ca2.8Bi 0.2Co4O9 thin films, respectively, which is …


Anisotropy Of Crystal Growth Mechanisms, Dielectricity, And Magnetism Of Multiferroic Bi2femno6 Thin Films, P Liu, Z X. Cheng, Y Du, L Y. Feng, H Fang, Xiaolin Wang, S X. Dou Mar 2014

Anisotropy Of Crystal Growth Mechanisms, Dielectricity, And Magnetism Of Multiferroic Bi2femno6 Thin Films, P Liu, Z X. Cheng, Y Du, L Y. Feng, H Fang, Xiaolin Wang, S X. Dou

Shi Xue Dou

Epitaxial Bi2FeMnO6 (BFMO) thin films deposited on various Nb:SrTiO3 substrates show that the lattice parameters are very sensitive to epitaxial strains. Compressive and tensile strains are induced to the in-plane lattice constants of the (100) and (111) oriented films, respectively, while that of the (110) oriented thin film stay unstrained. The thin films also exhibit a strongly anisotropic growth habit depending on the substrate. Spiral growth, such as in the (100) BFMO film, is unique in samples prepared by pulsed laser deposition. Extrinsic dielectric constants at low frequencies are attributed to oxygen vacancies via the Maxwell-Wagner effect. All the samples …


Dichotomy Of The Electronic Structure And Superconductivity Between Single-Layer And Double-Layer Fese/Srtio3 Films, Xu Liu, Defa Liu, Wenchao Zhang, Junfeng He, Lin Zhao, Shaolong He, Daixiang Mou, Fangsen Li, Chenjia Tang, Zhi Li, Lili Wang, Yingying Peng, Yan Liu, Chaoyu Chen, Guodong Liu, Xiaoli Dong, Jun Zhang, Chuangtian Chen, Zuyan Xu, Xi Chen, Xu-Cun Ma, Qi-Kun Xue, X J. Zhou Jan 2014

Dichotomy Of The Electronic Structure And Superconductivity Between Single-Layer And Double-Layer Fese/Srtio3 Films, Xu Liu, Defa Liu, Wenchao Zhang, Junfeng He, Lin Zhao, Shaolong He, Daixiang Mou, Fangsen Li, Chenjia Tang, Zhi Li, Lili Wang, Yingying Peng, Yan Liu, Chaoyu Chen, Guodong Liu, Xiaoli Dong, Jun Zhang, Chuangtian Chen, Zuyan Xu, Xi Chen, Xu-Cun Ma, Qi-Kun Xue, X J. Zhou

Australian Institute for Innovative Materials - Papers

The latest discovery of possible high-temperature superconductivity in the single-layer FeSe film grown on a SrTiO3 substrate has generated much attention. Initial work found that, while the single-layer FeSe/SrTiO3 film exhibits a clear signature of superconductivity, the double-layer film shows an insulating behaviour. Such a marked layer-dependent difference is surprising and the underlying origin remains unclear. Here we report a comparative angleresolved photoemission study between the single-layer and double-layer FeSe/SrTiO3 films annealed in vacuum. We find that, different from the single-layer FeSe/SrTiO3 film, the double-layer FeSe/SrTiO3 film is hard to get doped and remains in the semiconducting/ insulating state under …


Direct Synthesis Of Rgo/Cu2o Composite Films On Cu Foil For Supercapacitors, Xiangmao Dong, Kun Wang, Chongjun Zhao, Xiuzhen Qian, Shi Chen, Zhen Li, Hua-Kun Liu, S X. Dou Jan 2014

Direct Synthesis Of Rgo/Cu2o Composite Films On Cu Foil For Supercapacitors, Xiangmao Dong, Kun Wang, Chongjun Zhao, Xiuzhen Qian, Shi Chen, Zhen Li, Hua-Kun Liu, S X. Dou

Australian Institute for Innovative Materials - Papers

Reduced graphene oxide/cuprous oxide (RGO/Cu2O) composite films were directly synthesized on the surface of copper foil substrates through a straight redox reaction between GO and Cu foil via a hydrothermal approach. Characterization of the resultant composites with X-ray diffraction, Raman spectroscopy, X-ray photoelectron spectroscopy, and field emission scanning electron microscope (FESEM) confirms the formation of Cu2O and reduction of GO, in which Cu2O nanoparticles were well covered by RGO. The resultant composites (referred to as RGO/Cu2O/Cu) were directly used as electrodes for supercapacitors, and their electrochemical performance was assessed by cyclic voltammetry (CV), galvanostatic charge–discharge (GCD), and electrochemical impedance spectrometry …


Photocatalytic Degradation Of Methyl Orange By Ceo2 And Fe-Doped Ceo2 Films Under Visible Light Irradiation, D Channei, B Inceesungvorn, N Wetchakun, S Ukritnukun, Andrew Nattestad, Jun Chen, S Phanichphant Jan 2014

Photocatalytic Degradation Of Methyl Orange By Ceo2 And Fe-Doped Ceo2 Films Under Visible Light Irradiation, D Channei, B Inceesungvorn, N Wetchakun, S Ukritnukun, Andrew Nattestad, Jun Chen, S Phanichphant

Australian Institute for Innovative Materials - Papers

Undoped CeO2 and 0.50-5.00 mol% Fe-doped CeO2 nanoparticles were prepared by a homogeneous precipitation combined with homogeneous/impreganation method, and applied as photocatalyst films prepared by a doctor blade technique. The superior photocatalytic performances of the Fe-doped CeO2 films, compared with undoped CeO2 films, was ascribed mainly to a decrease in band gap energy and an increase in specific surface area of the material. The presence of Fe3+ as found from XPS analysis, may act as electron acceptor and/or hole donor, facilitating longer lived charge carrier separation in Fe-doped CeO2 films as confirmed by photoluminescence spectroscopy. The 1.50 mol% Fe-doped CeO2 …


Enhanced Visible-Light Photocatalytic Activity Of G-C3n4/Tio2 Films, Natkritta Boonprakob, Natda Wetchakun, Sukon Phanichphant, David Wexler, Peter Sherrell, Andrew Nattestad, Jun Chen, Burapat Inceesungvorn Jan 2014

Enhanced Visible-Light Photocatalytic Activity Of G-C3n4/Tio2 Films, Natkritta Boonprakob, Natda Wetchakun, Sukon Phanichphant, David Wexler, Peter Sherrell, Andrew Nattestad, Jun Chen, Burapat Inceesungvorn

Australian Institute for Innovative Materials - Papers

Enhanced photocatalytic degradation of methylene blue (MB) using graphitic carbon nitride/titanium dioxide (g-C3N4/TiO2) catalyst films has been demonstrated in this present work. The g-C3N4/TiO2 composites were prepared by directly heating the mixture of melamine and pre-synthesized TiO2 nanoparticles in Ar gas flow. The g-C3N4 contents in the g-C3N4/TiO2 composites were varied as 0, 20, 50 and 70 wt%. It was found that the visible-light-induced photocatalytic degradation of MB was remarkably increased upon coupling TiO2 with g-C3N4 and the best degradation performance of ∼70% was obtained from 50 wt% g-C3N4 loading content. Results from UV–vis absorption study, Electron microscopy, Fourier transform …


Dispersion And Characterization Of Arc Discharge Single-Walled Carbon Nanotubes-Towards Conducting Transparent Films, Benedikt Rosner, Dirk Guldi, Jun Chen, Andrew Minett, Rainer H. Fink Jan 2014

Dispersion And Characterization Of Arc Discharge Single-Walled Carbon Nanotubes-Towards Conducting Transparent Films, Benedikt Rosner, Dirk Guldi, Jun Chen, Andrew Minett, Rainer H. Fink

Australian Institute for Innovative Materials - Papers

This study addresses a combination of a well-developed and mild dispersion method and high-quality arc discharge single-walled carbon nanotubes (SWCNTs) as starting materials. Thus, we advance in fabrication of transparent, conducting films with extraordinary low material loss during SWCNT processing. The starting material was characterized by means of thermogravimetric analysis, high-resolution transmission electron microscopy and Raman spectroscopy. The quality of the starting material and produced dispersions was evaluated by ultraviolet and visible light absorption spectroscopy and Raman spectroscopy. A transparent conductive film was fabricated by drop-casting, whereas films were obtained with electrical to optical conductivity ratios (σDC/σOp) as high as …


Fabrication Of Free-Standing Hierarchical Carbon Nanofiber/Graphene Oxide/Polyaniline Films For Supercapacitors, Dongdong Xu, Qun Xu, Kaixi Wang, Jun Chen, Zhimin Chen Jan 2014

Fabrication Of Free-Standing Hierarchical Carbon Nanofiber/Graphene Oxide/Polyaniline Films For Supercapacitors, Dongdong Xu, Qun Xu, Kaixi Wang, Jun Chen, Zhimin Chen

Australian Institute for Innovative Materials - Papers

A hierarchical high-performance electrode with nanoacanthine-style polyaniline (PANI) deposited onto a carbon nanofiber/graphene oxide (CNF/GO) template was successfully prepared via an in situ polymerization process. The morphology analysis shows that introducing one-dimensional (1D) CNF could significantly decrease/inhibit the staking of laminated GO to form an open-porous CNF/GO architecture. Followed with in situ facial deposition of PANI, the as-synthesized PANI modified CNF/GO exhibits three-dimensional (3D) hierarchical layered nanoarchitecture, which favors the diffusion of the electrolyte ions into the inner region of active materials. The hierarchical free-standing electrodes were directly fabricated into sandwich structured supercapacitors using 1 M H2SO4 as the electrolyte …


Impacts Of Crystal Orientation Of Gaas On The Interfacial Structures And Electrical Properties Of Hf0.6la0.4ox Films, Tingting Jia, Hideo Kimura, Hongyang Zhao, Qiwen Yao, Zhenxiang Cheng, Xinghong Cheng, Yuehui Yu Jan 2014

Impacts Of Crystal Orientation Of Gaas On The Interfacial Structures And Electrical Properties Of Hf0.6la0.4ox Films, Tingting Jia, Hideo Kimura, Hongyang Zhao, Qiwen Yao, Zhenxiang Cheng, Xinghong Cheng, Yuehui Yu

Australian Institute for Innovative Materials - Papers

One of the major challenges in realizing the GaAs channel in the metal oxide semiconductor field effect transistor is the degrading in electron transport properties at the interface between GaAs and the gate oxide. In this study, Hf0.6La0.4Ox gate oxide films were deposited at a low temperature (200 °C) on GaAs(111)A and GaAs(100) substrates by plasma enhanced atomic layer deposition. Microstructure analysis indicates that residuals of gallium oxide, arsenic oxide, and As element remained at the interface of Hf0.6La0.4Ox/GaAs(100). On contrast, a smoother interface is observed between Hf0.6 …


Electronic Evidence Of An Insulator-Superconductor Crossover In Single-Layer Fese/Srtio3 Films, Junfeng He, Xu Liu, Wenhao Zhang, Lin Zhao, Defa Liu, Shaolong He, Daixiang Mou, Fangsen Li, Chenjia Tang, Zhi Li, Lili Wang, Yingying Peng, Yan Liu, Chaoyu Chen, Li Yu, Guodong Liu, Xiaoli Dong, Jun Zhang, Chuangtian Chen, Zuyan Xu, Xi Chen, Xu-Cun Ma, Qikun Xue, X J. Zhou Jan 2014

Electronic Evidence Of An Insulator-Superconductor Crossover In Single-Layer Fese/Srtio3 Films, Junfeng He, Xu Liu, Wenhao Zhang, Lin Zhao, Defa Liu, Shaolong He, Daixiang Mou, Fangsen Li, Chenjia Tang, Zhi Li, Lili Wang, Yingying Peng, Yan Liu, Chaoyu Chen, Li Yu, Guodong Liu, Xiaoli Dong, Jun Zhang, Chuangtian Chen, Zuyan Xu, Xi Chen, Xu-Cun Ma, Qikun Xue, X J. Zhou

Australian Institute for Innovative Materials - Papers

In high-temperature cuprate superconductors, it is now generally agreed that superconductivity is realized by doping an antiferromagnetic Mott (charge transfer) insulator. The doping-induced insulator-to-superconductor transition has been widely observed in cuprates, which provides important information for understanding the superconductivity mechanism. In the iron-based superconductors, however, the parent compound is mostly antiferromagnetic bad metal, raising a debate on whether an appropriate starting point should go with an itinerant picture or a localized picture. No evidence of doping-induced insulator-superconductor transition (or crossover) has been reported in the iron-based compounds so far. Here, we report an electronic evidence of an insulator-superconductor crossover observed …


Thin, Tough, Ph-Sensitive Hydrogel Films With Rapid Load Recovery, Sina Naficy, Geoffrey M. Spinks, Gordon G. Wallace Jan 2014

Thin, Tough, Ph-Sensitive Hydrogel Films With Rapid Load Recovery, Sina Naficy, Geoffrey M. Spinks, Gordon G. Wallace

Australian Institute for Innovative Materials - Papers

Stimuli-responsive hydrogels are used as the building blocks of actuators and sensors. Their application has been limited, however, by their lack of mechanical strength and recovery from loading. Here, we report the preparation of pH-sensitive hydrogels as thin as 20 μm. The hydrogels are made of a polyether-based polyurethane and poly(acrylic acid). A simple method was employed to create hydrogels with thicknesses in the range of 20-570 μm. The hydrogel films volume changed by a factor of ∼2 when the pH was switched around the transition point (pH 4). Tensile extensibilities of up to ∼350% were maintained at each pH, …


Pb Thin Films On Si(111): Local Density Of States And Defects, Stefan Eilers, Yi Du, S X. Dou Jan 2014

Pb Thin Films On Si(111): Local Density Of States And Defects, Stefan Eilers, Yi Du, S X. Dou

Australian Institute for Innovative Materials - Papers

Local density of states and atomic structure of the stripped incommensurate phase, the √3 x√7 phase and the 1 x 1 phase of a monolayer of Pb on Si(111) are characterized by scanning tunneling microscopy and spectroscopy. The dI/dV-images reveal congruent local density of states structures for the stripped incommensurate and the √3 x√ phase but suggest a hexagonal lattice of the local density of states for the 1x1 phase while the atomic structure consists of one more atom in the center of each hexagon. Vacancy defects and impurities show a depletion of local density of states for the stripped …


Interface Charge Doping Effects On Superconductivity Of Single-Unit-Cell Fese Films On Srtio3 Substrates, Wenhao Zhang, Zhi Li, Fangsen Li, Huimin Zhang, Jun-Ping Peng, Chenjia Tang, Qingyan Wang, Ke He, Xi Chen, Lili Wang, Xu-Cun Ma, Qi-Kun Xue Jan 2014

Interface Charge Doping Effects On Superconductivity Of Single-Unit-Cell Fese Films On Srtio3 Substrates, Wenhao Zhang, Zhi Li, Fangsen Li, Huimin Zhang, Jun-Ping Peng, Chenjia Tang, Qingyan Wang, Ke He, Xi Chen, Lili Wang, Xu-Cun Ma, Qi-Kun Xue

Australian Institute for Innovative Materials - Papers

We prepare single-unit-cell FeSe films on insulating SrTiO3 substrates by molecular beam epitaxy and investigate the evolution of their superconducting properties with annealing by in situ scanning tunneling microscopy and scanning tunneling spectroscopy and ex situ transport measurements. We find that through an annealing process, the superconductivity of 1-uc FeSe films on SrTiO3 substrates develops with the formation of stoichiometric FeSe films and is further enhanced by charge transfer from SrTiO3 substrates to FeSe films. Moreover, the superconductivity is independent of the bulk property of the SrTiO3 substrate, regardless of whether it is insulating or conductive. Our results reveal that …


Imaging The Electron-Boson Coupling In Superconducting Fese Films Using A Scanning Tunneling Microscope, Canli Song, Yi-Lin Wang, Yeping Jiang, Zhi Li, Lili Wang, Ke He, Xi Chen, Jennifer E. Hoffman, Xu-Cun Ma, Qi-Kun Xue Jan 2014

Imaging The Electron-Boson Coupling In Superconducting Fese Films Using A Scanning Tunneling Microscope, Canli Song, Yi-Lin Wang, Yeping Jiang, Zhi Li, Lili Wang, Ke He, Xi Chen, Jennifer E. Hoffman, Xu-Cun Ma, Qi-Kun Xue

Australian Institute for Innovative Materials - Papers

Scanning tunneling spectroscopy has been used to reveal signatures of a bosonic mode in the local quasiparticle density of states of superconducting FeSe films. The mode appears below Tc as a "dip-hump" feature at energy Ω ∼ 4.7kBTc beyond the superconducting gap Δ. Spectra on strained regions of the FeSe films reveal simultaneous decreases in Δ and Ω. This contrasts with all previous reports on other high-Tc superconductors, where Δ locally anticorrelates with Ω. A local strong coupling model is found to reconcile the discrepancy well, and to provide a unified picture of the electron-boson coupling in unconventional superconductors.


Optimization Of The Sequential Polymerization Synthesis Method For Polypyrrole Films, Danial Sangian, Wen Zheng, Geoffrey M. Spinks Jan 2014

Optimization Of The Sequential Polymerization Synthesis Method For Polypyrrole Films, Danial Sangian, Wen Zheng, Geoffrey M. Spinks

Australian Institute for Innovative Materials - Papers

Polypyrrole (PPy) is widely used as an electroactive material and is most often synthesized using electrochemical polymerization. Recently, a new electropolymerization method [1] was introduced that involved preparing the PPy as a sequential series of electrodeposited layers with solvent washing in between each deposited layer. This method enabled high quality PPy free-standing films to be prepared in a relatively short time. The purpose of the present study was to investigate the effect of the polymerization current density on the mechanical and electrical properties of the sequentially polymerized (SEP) PPy films. It was found that a low current density (0.1 mA/cm2) …