Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 3 of 3

Full-Text Articles in Physical Sciences and Mathematics

Integrated Coverage And Connectivity Configuration For Energy Conservation In Sensor Networks, Guoliang Xing, Xiaorui Wang, Yuanfang Zhang, Chenyang Lu, Robert Pless, Christopher Gill Nov 2004

Integrated Coverage And Connectivity Configuration For Energy Conservation In Sensor Networks, Guoliang Xing, Xiaorui Wang, Yuanfang Zhang, Chenyang Lu, Robert Pless, Christopher Gill

All Computer Science and Engineering Research

An effective approach for energy conservation in wireless sensor networks is scheduling sleep intervals for extraneous nodes, while the remaining nodes stay active to provide continuous service. For the sensor network to operate successfully, the active nodes must maintain both sensing coverage and network connectivity. Fur-thermore, the network must be able to configure itself to any feasible degrees of coverage and connectivity in order to support different applications and environments with diverse requirements. This paper presents the design and analysis of novel protocols that can dynamically configure a network to achieve guaranteed degrees of coverage and connectivity. This work differs …


Dynamic Shared State Maintenance In Distributed Virtual Environments, Felix George Hamza-Lup Jan 2004

Dynamic Shared State Maintenance In Distributed Virtual Environments, Felix George Hamza-Lup

Electronic Theses and Dissertations

Advances in computer networks and rendering systems facilitate the creation of distributed collaborative environments in which the distribution of information at remote locations allows efficient communication. Particularly challenging are distributed interactive Virtual Environments (VE) that allow knowledge sharing through 3D information. In a distributed interactive VE the dynamic shared state represents the changing information that multiple machines must maintain about the shared virtual components. One of the challenges in such environments is maintaining a consistent view of the dynamic shared state in the presence of inevitable network latency and jitter. A consistent view of the shared scene will significantly increase …


Quantum Lattice Representation Of Dark Solitons, George Vahala, Linda L. Vahala, Jeffrey Yepez Jan 2004

Quantum Lattice Representation Of Dark Solitons, George Vahala, Linda L. Vahala, Jeffrey Yepez

Electrical & Computer Engineering Faculty Publications

The nonlinear Schrodinger (NLS) equation in a self-defocusing Kerr medium supports dark solitons. Moreover the mean field description of a dilute Bose-Einstein condensate (BEC) is described by the Gross-Pitaevskii equation, which for a highly anisotropic (cigar-shaped) magnetic trap reduces to a one-dimensional (1D) cubic NLS in an external potential. A quantum lattice algorithm is developed for the dark solitons. Simulations are presented for both black (stationary) solitons as well as (moving) dark solitons. Collisions of dark solitons are compared with the exact analytic solutions and coupled dark-bright vector solitons are examined. The quantum algorithm requires 2 qubits per scalar field …