Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 4 of 4

Full-Text Articles in Physical Sciences and Mathematics

Study Of Single-Photon Wave-Packets With Atomically Thin Nonlinear Mirrors, Christopher Klenke Aug 2022

Study Of Single-Photon Wave-Packets With Atomically Thin Nonlinear Mirrors, Christopher Klenke

Graduate Theses and Dissertations

A novel controlled phase gate for photonic quantum computing is proposed by exploiting the powerful nonlinear optical responses of atomically thin transition metal dichalcogenides (TMDs) and it is shown that such a gate could elicit a π-rad phase shift in the outgoing electric field only in the case of two incident photons and no other cases. Firstly, the motivation for such a gate is developed and then the implementation of monolayer TMDs is presented as a solution to previous realization challenges. The single-mode case of incident photons upon a TMD is derived and is then used to constrain the more …


High Mobility N-Type Field Effect Transistors Enabled By Wse2/Pdse2 Heterojunctions, Arthur Bowman Iii Jan 2021

High Mobility N-Type Field Effect Transistors Enabled By Wse2/Pdse2 Heterojunctions, Arthur Bowman Iii

Wayne State University Dissertations

Two-dimensional (2D) semiconductors such as transition metal dichalcogenides (TMDs) have emerged as a promising candidate for post-silicon electronics. Few-layer tungsten diselenide (WSe2), a well-studied TMD, has sown high hole mobility and ON/OFF ratio in field effect transistor (FET) devices. But the n-type performance of WSe2 is still quite limited by the presence of a substantial Schottky Barrier. Palladium diselenide, (PdSe2) is a newly discovered TMD that is of interest because of its high electron mobility, and moderate ON/OFF ratios. However, despite its relatively small bandgap, the n-type performance of few-layer PdSe2 FETs has also been limited by a Schottky barrier, …


Van Der Waals Epitaxy Of Ultrathin Early Transition Metal (Ti & V) (Di)Selenides: Charge And Magnetic Order In The Ultrathin Limit, Manuel Bonilla Lopez Jun 2020

Van Der Waals Epitaxy Of Ultrathin Early Transition Metal (Ti & V) (Di)Selenides: Charge And Magnetic Order In The Ultrathin Limit, Manuel Bonilla Lopez

USF Tampa Graduate Theses and Dissertations

Since the isolation of graphene in 2004, two-dimensional (2D) layered materials, specially the transition metal dichalcogenides (TMDs), have attracted immense interest from theoreticians and experimentalist due to the diversity of properties presented in this family of materials. The main reason for the interest in such materials has been the observation of emergent properties as a consequence of the reduced dimensions, i.e. the monolayer regime. Initially the monolayer regime was obtained via the scotch-tape method. The implementation of exfoliation techniques was successful since layered 2D materials are composed of stacked layers held together by weak van der Walls forces that permits …


Scanning Probe Microscopy Measurements On 2d Materials And Iridates, Armin Ansary Jan 2019

Scanning Probe Microscopy Measurements On 2d Materials And Iridates, Armin Ansary

Theses and Dissertations--Physics and Astronomy

In the past two decades, there has been a quest to understand and utilize novel materials such as iridates and two-dimensional (2D) materials. These classes of materials show a lot of interesting properties both in theoretical predictions as well as experimental results. Physical properties of some of these materials have been investigated using scanning probe measurements, along with other techniques.

One-dimensional (1D) catalytic etching was investigated in few-layer hexagonal boron nitride (hBN) films. Etching of hBN was shown to share several similarities with that of graphitic films. As in graphitic films, etch tracks in hBN commenced at film edges and …