Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 8 of 8

Full-Text Articles in Physical Sciences and Mathematics

Machine Learning Modeling Of Polymer Coating Formulations: Benchmark Of Feature Representation Schemes, Nelson I. Evbarunegbe Nov 2023

Machine Learning Modeling Of Polymer Coating Formulations: Benchmark Of Feature Representation Schemes, Nelson I. Evbarunegbe

Masters Theses

Polymer coatings offer a wide range of benefits across various industries, playing a crucial role in product protection and extension of shelf life. However, formulating them can be a non-trivial task given the multitude of variables and factors involved in the production process, rendering it a complex, high-dimensional problem. To tackle this problem, machine learning (ML) has emerged as a promising tool, showing considerable potential in enhancing various polymer and chemistry-based applications, particularly those dealing with high dimensional complexities.

Our research aims to develop a physics-guided ML approach to facilitate the formulations of polymer coatings. As the first step, this …


Generalizable Deep-Learning-Based Wireless Indoor Localization, Ali Owfi Aug 2023

Generalizable Deep-Learning-Based Wireless Indoor Localization, Ali Owfi

All Theses

The growing interest in indoor localization has been driven by its wide range of applications in areas such as smart homes, industrial automation, and healthcare. With the increasing reliance on wireless devices for location-based services, accurate estimation of device positions within indoor environments has become crucial. Deep learning approaches have shown promise in leveraging wireless parameters like Channel State Information (CSI) and Received Signal Strength Indicator (RSSI) to achieve precise localization. However, despite their success in achieving high accuracy, these deep learning models suffer from limited generalizability, making them unsuitable for deployment in new or dynamic environments without retraining. To …


Visual Complexity Of The Time-Frequency Image Pinpoints The Epileptogenic Zone: An Unsupervised Deep-Learning Tool To Analyze Interictal Intracranial Eeg, Sarvagya Gupta Aug 2023

Visual Complexity Of The Time-Frequency Image Pinpoints The Epileptogenic Zone: An Unsupervised Deep-Learning Tool To Analyze Interictal Intracranial Eeg, Sarvagya Gupta

Graduate Masters Theses

Epilepsy, a prevalent neurological disorder characterized by recurrent seizures, continues to pose significant challenges in diagnosis and treatment, particularly among children. Despite substantial advancements in medical technology and treatment modalities, localization of the part of brain that causes seizures (Epileptogenic Zone) remains a difficult task. Intracranial EEG (iEEG) is often used to estimate the epileptogenic zone (EZ) in children with drugresistant epilepsy (DRE) and target it during surgery. Conventionally, iEEG signals are inspected in the time domain by human experts aiming to locate epileptiform activity.

Visual scrutiny of the iEEG time-frequency (TF) images can be an alternative way to review …


Predicting Material Structures And Properties Using Deep Learning And Machine Learning Algorithms, Yuqi Song Jul 2023

Predicting Material Structures And Properties Using Deep Learning And Machine Learning Algorithms, Yuqi Song

Theses and Dissertations

Discovering new materials and understanding their crystal structures and chemical properties are critical tasks in the material sciences. Although computational methodologies such as Density Functional Theory (DFT), provide a convenient means for calculating certain properties of materials or predicting crystal structures when combined with search algorithms, DFT is computationally too demanding for structure prediction and property calculation for most material families, especially for those materials with a large number of atoms. This dissertation aims to address this limitation by developing novel deep learning and machine learning algorithms for effective prediction of material crystal structures and properties. Our data-driven machine learning …


Extending The Convolution In Graph Neural Networks To Solve Materials Science And Node Classification Problems, Steph-Yves Mike Louis Jul 2023

Extending The Convolution In Graph Neural Networks To Solve Materials Science And Node Classification Problems, Steph-Yves Mike Louis

Theses and Dissertations

The usage of graph to represent one's data in machine learning has grown in popularity in both academia and the industry due to its inherent benefits. With its flexible nature and immediate translation to real life observed objects, graph representation had a considerable contribution in advancing the state-of-the-art performance of machine learning in materials.

In this dissertation proposal, we discuss how machines can learn from graph encoded data and provide excellent results through graph neural networks (GNN). Notably, we focus our adaptation of graph neural networks on three tasks: predicting crystal materials properties, nullifying the negative impact of inferior graph …


Breast Density Classification Using Deep Learning, Conrad Thomas Testagrose Jan 2023

Breast Density Classification Using Deep Learning, Conrad Thomas Testagrose

UNF Graduate Theses and Dissertations

Breast density screenings are an accepted means to determine a patient's predisposed risk of breast cancer development. Although the direct correlation is not fully understood, breast cancer risk increases with higher levels of mammographic breast density. Radiologists visually assess a patient's breast density using mammogram images and assign a density score based on four breast density categories outlined by the Breast Imaging and Reporting Data Systems (BI-RADS). There have been efforts to develop automated tools that assist radiologists with increasing workloads and to help reduce the intra- and inter-rater variability between radiologists. In this thesis, I explored two deep-learning-based approaches …


Effective Systems For Insider Threat Detection, Muhanned Qasim Jabbar Alslaiman Jan 2023

Effective Systems For Insider Threat Detection, Muhanned Qasim Jabbar Alslaiman

Browse all Theses and Dissertations

Insider threats to information security have become a burden for organizations. Understanding insider activities leads to an effective improvement in identifying insider attacks and limits their threats. This dissertation presents three systems to detect insider threats effectively. The aim is to reduce the false negative rate (FNR), provide better dataset use, and reduce dimensionality and zero padding effects. The systems developed utilize deep learning techniques and are evaluated using the CERT 4.2 dataset. The dataset is analyzed and reformed so that each row represents a variable length sample of user activities. Two data representations are implemented to model extracted features …


Liquid Tab, Nathan Hulet Jan 2023

Liquid Tab, Nathan Hulet

Williams Honors College, Honors Research Projects

Guitar transcription is a complex task requiring significant time, skill, and musical knowledge to achieve accurate results. Since most music is recorded and processed digitally, it would seem like many tools to digitally analyze and transcribe the audio would be available. However, the problem of automatic transcription presents many more difficulties than are initially evident. There are multiple ways to play a guitar, many diverse styles of playing, and every guitar sounds different. These problems become even more difficult considering the varying qualities of recordings and levels of background noise.

Machine learning has proven itself to be a flexible tool …