Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Engineering

Series

Hole

Publication Year

Articles 1 - 3 of 3

Full-Text Articles in Physical Sciences and Mathematics

Exchange Interaction Mediated Ferroelectricity In Multiferroic Mntio3 With Anisotropic Orbital Hybridization And Hole Delocalization, Shiwei Chen, Paoan Lin, Horngtay Jeng, S W. Fu, Jennmin Lee, Jyhfu Lee, Chihwen Pao, Hirofumi Ishii, Kuding Tsuei, Nozomu Hiraoka, Dapeng Chen, S X. Dou, Xiaolin Wang, Kueihtzu Lu, Jinming Chen Jan 2014

Exchange Interaction Mediated Ferroelectricity In Multiferroic Mntio3 With Anisotropic Orbital Hybridization And Hole Delocalization, Shiwei Chen, Paoan Lin, Horngtay Jeng, S W. Fu, Jennmin Lee, Jyhfu Lee, Chihwen Pao, Hirofumi Ishii, Kuding Tsuei, Nozomu Hiraoka, Dapeng Chen, S X. Dou, Xiaolin Wang, Kueihtzu Lu, Jinming Chen

Australian Institute for Innovative Materials - Papers

We present the orbital structure of MnTiO3 with polarization dependent x-ray absorption and resonant x-ray emission spectra accompanied with electronic structure calculations. The results clearly indicate a strongly anisotropic O 2p-Mn 3d orbital hybridization whereas the Mn 3d hole state shows a highly delocalized characteristic ascribed to the 3d-4p mixing. The extended Mn 4p orbital could enhance the exchange interaction between Mn (3d)-O (2p)-Mn (3d) leading to an asymmetric charge distribution in Mn-O bonds. The delocalized characteristic of Mn 3d holes is indispensable to the mechanism of spin-dependent-metal-ligand hybridization to explain magnetically induced ferroelectricity.


Elliptical Hole Pockets In The Fermi Surfaces Of Unhydrated And Hydrated Sodium Cobalt Oxides, J Laverock, S B. Dugdale, J A. Duffy, J Wooldridge, G Balakrishnan, M R. Lees, G.-Q Zheng, Dapeng Chen, C T. Lin, Y Sakurai Jan 2007

Elliptical Hole Pockets In The Fermi Surfaces Of Unhydrated And Hydrated Sodium Cobalt Oxides, J Laverock, S B. Dugdale, J A. Duffy, J Wooldridge, G Balakrishnan, M R. Lees, G.-Q Zheng, Dapeng Chen, C T. Lin, Y Sakurai

Australian Institute for Innovative Materials - Papers

The surprise discovery of superconductivity below 5 K in sodium cobalt oxides when hydrated with water has caught the attention of experimentalists and theorists alike. Most explanations for its occurence have focused heavily on the properties of some small elliptically shaped pockets predicted to be the electronically dominant Fermi surface sheet, but direct attempts to look for them have instead cast serious doubts over their existence. Here we present evidence that these pockets do indeed exist, based on bulk measurements of the electron momentum distribution in unhydrated and hydrated sodium cobalt oxides using the technique of x-ray Compton scattering.


Efficient Dye Sensitized Solar Cells Based On A 2-Thiophen-2-Yl-Vinyl-Conjugated Ruthenium Photosensitizer And A Conjugated Polymer Hole Conductor, Attila Mozer, Y Wada, K-J Jiang, N Masaki, S Yanagida, Shogo Mori Jan 2006

Efficient Dye Sensitized Solar Cells Based On A 2-Thiophen-2-Yl-Vinyl-Conjugated Ruthenium Photosensitizer And A Conjugated Polymer Hole Conductor, Attila Mozer, Y Wada, K-J Jiang, N Masaki, S Yanagida, Shogo Mori

Australian Institute for Innovative Materials - Papers

Efficient dye-sensitized TiO2 solar cells based on a 2-thiophen-2-yl-vinyl-conjugated ruthenium photosensitizer and a conjugated polymer poly(3,4-ethylenedioxythiophene) have been fabricated. A maximum power conversion efficiency of 2.6% is achieved when the mesoporous TiO2 layer is 5–6 μm. The high fill factor (0.74), the open circuit voltage (0.78V), and the linear light intensity dependence of the short circuit current density (4.5mA cm−2 at 100 mW cm−2) make these devices promising for solid state photovoltaic applications.