Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Engineering

Gordon Wallace

2013

Electrically

Articles 1 - 2 of 2

Full-Text Articles in Physical Sciences and Mathematics

Electrically Conductive, Tough Hydrogels With Ph Sensitivity, Sina Naficy, Joselito M. Razal, Geoffrey M. Spinks, Gordon G. Wallace, Philip G. Whitten Mar 2013

Electrically Conductive, Tough Hydrogels With Ph Sensitivity, Sina Naficy, Joselito M. Razal, Geoffrey M. Spinks, Gordon G. Wallace, Philip G. Whitten

Gordon Wallace

Electrically conductive, mechanically tough hydrogels based on a double network (DN) comprised of poly(ethylene glycol) methyl ether methacrylate (PPEGMA) and poly(acrylic acid) (PAA) were produced. Poly(3,4-ethylenedioxythiophene) (PEDOT) was chemically polymerized within the tough DN gel to provide electronic conductivity. The effects of pH on the tensile and compressive mechanical properties of the fully swollen hydrogels, along with their electrical conductivity and swelling ratio were determined. Compressive and tensile strengths as high as 11.6 and 0.6 MPa, respectively, were obtained for hydrogels containing PEDOT with a maximum conductivity of 4.3 S cm-1. This conductivity is the highest yet reported for hydrogel …


Nanostructured Electrically Conducting Biofibres Produced Using A Reactive Wet-Spinning Process, Javad Foroughi, Geoffrey M. Spinks, Gordon G. Wallace Mar 2013

Nanostructured Electrically Conducting Biofibres Produced Using A Reactive Wet-Spinning Process, Javad Foroughi, Geoffrey M. Spinks, Gordon G. Wallace

Gordon Wallace

Electrically conducting, robust fibres comprised of both an alginate (Alg) biopolymer and a polypyrrole (PPy) component have been produced using reactive wet-spinning. Using this approach polypyrrole-biopolymer fibres were also produced with single-walled carbon nanotubes (CNTs), added to provide additional strength and conductivity. The fibres produced containing CNTs show a 78% increase in ultimate stress and 25% increase in elongation to break compared to PPy-alginate fibre. These properties are essential for studies involving the use of electrical stimulation to promote nerve regrowth and/or muscle regeneration. The resultant a novel fibres had been evaluated to develop a viable system in incorporating biological …