Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Engineering

Australian Institute for Innovative Materials - Papers

Nitrogen

Articles 1 - 9 of 9

Full-Text Articles in Physical Sciences and Mathematics

Evaluation Of Persistent-Mode Operation In A Superconducting Mgb2 Coil In Solid Nitrogen, Dipakkumar Patel, Md Shahriar Hossain, Khay Wai W. See, Wenbin Qiu, Hiroki Kobayashi, Zongqing Ma, Seong Jun Kim, Jonggi Hong, Jin Yong Park, Seyong Choi, Minoru Maeda, Mohammed Shahabuddin, Matthew A. Rindfleisch, Michael Tomsic, S X. Dou, Jung Ho Kim Jan 2016

Evaluation Of Persistent-Mode Operation In A Superconducting Mgb2 Coil In Solid Nitrogen, Dipakkumar Patel, Md Shahriar Hossain, Khay Wai W. See, Wenbin Qiu, Hiroki Kobayashi, Zongqing Ma, Seong Jun Kim, Jonggi Hong, Jin Yong Park, Seyong Choi, Minoru Maeda, Mohammed Shahabuddin, Matthew A. Rindfleisch, Michael Tomsic, S X. Dou, Jung Ho Kim

Australian Institute for Innovative Materials - Papers

We report the fabrication of a magnesium diboride (MgB2) coil and evaluate its persistent-mode operation in a system cooled by a cryocooler with solid nitrogen (SN2) as a cooling medium. The main purpose of SN2 was to increase enthalpy of the cold mass. For this work, an in situ processed carbon-doped MgB2 wire was used. The coil was wound on a stainless steel former in a single layer (22 turns), with an inner diameter of 109 mm and height of 20 mm without any insulation. The two ends of the coil were then joined to make a persistent-current switch to …


Superior Sodium-Ion Storage Performance Of Co3o4@Nitrogen-Doped Carbon: Derived From A Metal–Organic Framework, Ying Wang, Caiyun Wang, Yijing Wang, Hua-Kun Liu, Zhenguo Huang Jan 2016

Superior Sodium-Ion Storage Performance Of Co3o4@Nitrogen-Doped Carbon: Derived From A Metal–Organic Framework, Ying Wang, Caiyun Wang, Yijing Wang, Hua-Kun Liu, Zhenguo Huang

Australian Institute for Innovative Materials - Papers

Nitrogen-doped carbon coated Co 3 O 4 nanoparticles (Co 3 O 4 @NC) with high Na-ion storage capacity and unprecedented long-life cycling stability are reported in this paper. The Co 3 O 4 @NC was derived from a metal – organic framework ZIF-67, where the Co ions and organic linkers were, respectively, converted to Co 3 O 4 nanoparticle cores and nitrogen-doped carbon shells through a controlled two-step annealing process. The Co 3 O 4 @NC shows a porous nature with a surface area of 101 m 2 g 1 . When applied as an anode for sodium ion batteries …


Synthesis Of Nitrogen-Doped Graphene Via Thermal Treatment Of Graphene Oxide Within Methylimidazole And Its Capacitance Performance As Electric Double Layer Capacitor, Md. Monirul Islam, Shaikh Nayeem Faisal, Anup Kumar Roy, Sonia Ansari, Dean Cardillo, Konstantin K. Konstantinov, Enamul Haque Jan 2015

Synthesis Of Nitrogen-Doped Graphene Via Thermal Treatment Of Graphene Oxide Within Methylimidazole And Its Capacitance Performance As Electric Double Layer Capacitor, Md. Monirul Islam, Shaikh Nayeem Faisal, Anup Kumar Roy, Sonia Ansari, Dean Cardillo, Konstantin K. Konstantinov, Enamul Haque

Australian Institute for Innovative Materials - Papers

Nitrogen-doped graphene was successfully synthesised from graphene oxide (GO) and 2-methylimidazole composite via thermal treatment under argon flow at 700oC within 1h. This synthesised N-doped graphene exhibits homogeneous nitrogen doping with concentration of ~5% in three different nitrogen configuration namelypyridinic N, pyrrolic N and graphitic N. The electric double layer capacitor (EDLC) made up with this N-doped graphene showed excellent specific capacitance 274 F/g at current density of 1A/g, which was ~7 times higher than GO. This EDLC capacitor showed excellent cyclic stability up to 5000 cycles with capacity retention of ~91%.


Manganese Dioxide-Anchored Three-Dimensional Nitrogen-Doped Graphene Hybrid Aerogels As Excellent Anode Materials For Lithium Ion Batteries, Zhu Yin Sui, Caiyun Wang, Kewei Shu, Quan-Sheng Yang, Yu Ge, Gordon G. Wallace, Bao Hang Han Jan 2015

Manganese Dioxide-Anchored Three-Dimensional Nitrogen-Doped Graphene Hybrid Aerogels As Excellent Anode Materials For Lithium Ion Batteries, Zhu Yin Sui, Caiyun Wang, Kewei Shu, Quan-Sheng Yang, Yu Ge, Gordon G. Wallace, Bao Hang Han

Australian Institute for Innovative Materials - Papers

The capacity of manganese dioxide (MnO2) deteriorates with cycling due to the irreversible changes induced by the repeated lithiation and delithiation processes. To overcome this drawback, MnO2/nitrogen-doped graphene hybrid aerogels (MNGAs) were prepared via a facile redox process between KMnO4 and carbon within nitrogen-doped graphene hydrogels. The three-dimensional nitrogen-doped graphene hydrogels were prepared and utilized as matrices for MnO2 deposition. The MNGAs-120 obtained after a deposition time of 120 min delivered a very high discharge capacity of 909 mA h g-1 after 200 cycles at a current density of 400 mA g-1 …


Role Of Anions On Structure And Pseudocapacitive Performance Of Metal Double Hydroxides Decorated With Nitrogen-Doped Graphene, Nasir Mahmood, Muhammad Nawaz Tahir, Asif Mahmood, Wenlong Yang, Xingxing Gu, Chuanbao Cao, Yawen Zhang, Yanglong Hou Jan 2015

Role Of Anions On Structure And Pseudocapacitive Performance Of Metal Double Hydroxides Decorated With Nitrogen-Doped Graphene, Nasir Mahmood, Muhammad Nawaz Tahir, Asif Mahmood, Wenlong Yang, Xingxing Gu, Chuanbao Cao, Yawen Zhang, Yanglong Hou

Australian Institute for Innovative Materials - Papers

Electrochemical capacitors (EC) bear faster charge-discharge; however, their real applications are still on a long away due to lower capacitance and energy densities which mainly arise from simple surface charge accumulation or/and reaction. Here, a novel synthesis strategy was designed to obtain the purposeful hybrids of nickel cobalt double hydroxide (NiCoDH) with genetic morphology to improve their electrochemical performance as electrode of EC. Nanostructures of metal hydroxides were grown on t he nitrogen-doped graphene (NG) sheets by utilizing defects as nucleation sites and their composition was optimized both by tuning the ratio of Ni:Co as well as the counter halogen …


Charged-Controlled Separation Of Nitrogen From Natural Gas Using Boron Nitride Fullerene, Qiao Sun, Caixia Sun, Aijun Du, Zhen Li Jan 2014

Charged-Controlled Separation Of Nitrogen From Natural Gas Using Boron Nitride Fullerene, Qiao Sun, Caixia Sun, Aijun Du, Zhen Li

Australian Institute for Innovative Materials - Papers

Natural gas (the main component is methane) has been widely used as a fuel and raw material in industry. Removal of nitrogen (N2) from methane (CH4) can reduce the cost of natural gas transport and improve its efficiency. However, their extremely similar size increases the difficulty of separating N2 from CH4. In this study, we have performed a comprehensive investigation of N2 and CH4 adsorption on different charge states of boron nitride (BN) nanocage fullerene, B36N36, by using a density functional theory approach. The calculational results indicate …


Nitrogen Removal From Natural Gas Using Solid Boron: A First-Principles Computational Study, Qiao Sun, Meng Wang, Zhen Li, Ping Li, Weihua Wang, Xiaojun Tan, Aijun Du Jan 2013

Nitrogen Removal From Natural Gas Using Solid Boron: A First-Principles Computational Study, Qiao Sun, Meng Wang, Zhen Li, Ping Li, Weihua Wang, Xiaojun Tan, Aijun Du

Australian Institute for Innovative Materials - Papers

Selective separation of nitrogen (N2) from methane (CH4) is highly significant in natural gas purification, and it is very challenging to achieve this because of their nearly identical size (the molecular diameters of N2 and CH4 are 3.64 Å and 3.80 Å, respectively). Here we theoretically study the adsorption of N2 and CH4 on B12 cluster and solid boron surfaces a-B12 and c-B28. Our results show that these electron-deficiency boron materials have higher selectivity in adsorbing and capturing N2 than CH4, which provides very useful information for experimentally exploiting boron materials for natural gas purification.


Boron-Nitrogen-Hydrogen (Bnh) Compounds: Recent Developments In Hydrogen Storage, Applications In Hydrogenation And Catalysis, And New Syntheses, Zhenguo Huang, Tom Autrey Jan 2012

Boron-Nitrogen-Hydrogen (Bnh) Compounds: Recent Developments In Hydrogen Storage, Applications In Hydrogenation And Catalysis, And New Syntheses, Zhenguo Huang, Tom Autrey

Australian Institute for Innovative Materials - Papers

The strong efforts devoted to the exploration of BNH compounds for hydrogen storage have led to impressive advances in the field of boron chemistry. This review summarizes progress in this field from three aspects. It starts with the most recent developments in using BNH compounds for hydrogen storage, covering NH3BH3, B3H8- containing compounds, and CBN compounds. The following section then highlights interesting applications of BNH compounds in hydrogenation and catalysis. The last part is focused on breakthroughs in the syntheses and discovery of new BNH organic analogues. The role of N-Hδ+ …


Hollow Nitrogen Containing Core/Shell Fibrous Carbon Nanomaterials As Support To Platinum Nanocatalysts And Their Tem Tomography Study, Cuifeng Zhou, Zongwen Liu, Xusheng Du, David Rg Mitchell, Yiu-Wing Mai, Yushan Yan, Simon Peter Ringer Jan 2012

Hollow Nitrogen Containing Core/Shell Fibrous Carbon Nanomaterials As Support To Platinum Nanocatalysts And Their Tem Tomography Study, Cuifeng Zhou, Zongwen Liu, Xusheng Du, David Rg Mitchell, Yiu-Wing Mai, Yushan Yan, Simon Peter Ringer

Australian Institute for Innovative Materials - Papers

Core/shell nanostructured carbon materials with carbon nanofiber (CNF) as the core and a nitrogen (N)-doped graphitic layer as the shell were synthesized by pyrolysis of CNF/polyaniline (CNF/PANI) composites prepared by in situ polymerization of aniline on CNFs. High-resolution transmission electron microscopy (TEM), X-ray diffraction (XRD), Fourier transform infrared and Raman analyses indicated that the PANI shell was carbonized at 900 degress C. Platinum (Pt) nanoparticles were reduced by formic acid with catalyst supports. Compared to the untreated CNF/ PANI composites, the carbonized composites were proven to be better supporting materials for the Pt nanocatalysts and showed superior performance as catalyst …