Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Engineering

Washington University in St. Louis

Machine learning

Publication Year

Articles 1 - 5 of 5

Full-Text Articles in Physical Sciences and Mathematics

Machine Learning For Analog/Mixed-Signal Integrated Circuit Design Automation, Weidong Cao Aug 2021

Machine Learning For Analog/Mixed-Signal Integrated Circuit Design Automation, Weidong Cao

McKelvey School of Engineering Theses & Dissertations

Analog/mixed-signal (AMS) integrated circuits (ICs) play an essential role in electronic systems by processing analog signals and performing data conversion to bridge the analog physical world and our digital information world.Their ubiquitousness powers diverse applications ranging from smart devices and autonomous cars to crucial infrastructures. Despite such critical importance, conventional design strategies of AMS circuits still follow an expensive and time-consuming manual process and are unable to meet the exponentially-growing productivity demands from industry and satisfy the rapidly-changing design specifications from many emerging applications. Design automation of AMS IC is thus the key to tackling these challenges and has been …


Holistic Control For Cyber-Physical Systems, Yehan Ma Jan 2021

Holistic Control For Cyber-Physical Systems, Yehan Ma

McKelvey School of Engineering Theses & Dissertations

The Industrial Internet of Things (IIoT) are transforming industries through emerging technologies such as wireless networks, edge computing, and machine learning. However, IIoT technologies are not ready for control systems for industrial automation that demands control performance of physical processes, resiliency to both cyber and physical disturbances, and energy efficiency. To meet the challenges of IIoT-driven control, we propose holistic control as a cyber-physical system (CPS) approach to next-generation industrial automation systems. In contrast to traditional industrial automation systems where computing, communication, and control are managed in isolation, holistic control orchestrates the management of cyber platforms (networks and computing platforms) …


Improving Pure-Tone Audiometry Using Probabilistic Machine Learning Classification, Xinyu Song Aug 2017

Improving Pure-Tone Audiometry Using Probabilistic Machine Learning Classification, Xinyu Song

McKelvey School of Engineering Theses & Dissertations

Hearing loss is a critical public health concern, affecting hundreds millions of people worldwide and dramatically impacting quality of life for affected individuals. While treatment techniques have evolved in recent years, methods for assessing hearing ability have remained relatively unchanged for decades. The standard clinical procedure is the modified Hughson-Westlake procedure, an adaptive pure-tone detection task that is typically performed manually by audiologists, costing millions of collective hours annually among healthcare professionals. In addition to the high burden of labor, the technique provides limited detail about an individual’s hearing ability, estimating only detection thresholds at a handful of pre-defined pure-tone …


Revelation Of Yin-Yang Balance In Microbial Cell Factories By Data Mining, Flux Modeling, And Metabolic Engineering, Gang Wu May 2016

Revelation Of Yin-Yang Balance In Microbial Cell Factories By Data Mining, Flux Modeling, And Metabolic Engineering, Gang Wu

McKelvey School of Engineering Theses & Dissertations

The long-held assumption of never-ending rapid growth in biotechnology and especially in synthetic biology has been recently questioned, due to lack of substantial return of investment. One of the main reasons for failures in synthetic biology and metabolic engineering is the metabolic burdens that result in resource losses. Metabolic burden is defined as the portion of a host cells resources either energy molecules (e.g., NADH, NADPH and ATP) or carbon building blocks (e.g., amino acids) that is used to maintain the engineered components (e.g., pathways). As a result, the effectiveness of synthetic biology tools heavily dependents on cell capability to …


A General Framework Of Large-Scale Convex Optimization Using Jensen Surrogates And Acceleration Techniques, Soysal Degirmenci May 2016

A General Framework Of Large-Scale Convex Optimization Using Jensen Surrogates And Acceleration Techniques, Soysal Degirmenci

McKelvey School of Engineering Theses & Dissertations

In a world where data rates are growing faster than computing power, algorithmic acceleration based on developments in mathematical optimization plays a crucial role in narrowing the gap between the two. As the scale of optimization problems in many fields is getting larger, we need faster optimization methods that not only work well in theory, but also work well in practice by exploiting underlying state-of-the-art computing technology.

In this document, we introduce a unified framework of large-scale convex optimization using Jensen surrogates, an iterative optimization method that has been used in different fields since the 1970s. After this general treatment, …