Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 4 of 4

Full-Text Articles in Physical Sciences and Mathematics

Model-Based Deep Learning For Computational Imaging, Xiaojian Xu Aug 2022

Model-Based Deep Learning For Computational Imaging, Xiaojian Xu

McKelvey School of Engineering Theses & Dissertations

This dissertation addresses model-based deep learning for computational imaging. The motivation of our work is driven by the increasing interests in the combination of imaging model, which provides data-consistency guarantees to the observed measurements, and deep learning, which provides advanced prior modeling driven by data. Following this idea, we develop multiple algorithms by integrating the classical model-based optimization and modern deep learning to enable efficient and reliable imaging. We demonstrate the performance of our algorithms by validating their performance on various imaging applications and providing rigorous theoretical analysis.

The dissertation evaluates and extends three general frameworks, plug-and-play priors (PnP), regularized …


Measuring Localization Confidence For Quantifying Accuracy And Heterogeneity In Single-Molecule Super-Resolution Microscopy, Hesam Mazidi, Tianben Ding, Arye Nehorai, Matthew D. Lew Feb 2020

Measuring Localization Confidence For Quantifying Accuracy And Heterogeneity In Single-Molecule Super-Resolution Microscopy, Hesam Mazidi, Tianben Ding, Arye Nehorai, Matthew D. Lew

Electrical & Systems Engineering Publications and Presentations

We present a computational method, termed Wasserstein-induced flux (WIF), to robustly quantify the accuracy of individual localizations within a single-molecule localization microscopy (SMLM) dataset without ground- truth knowledge of the sample. WIF relies on the observation that accurate localizations are stable with respect to an arbitrary computational perturbation. Inspired by optimal transport theory, we measure the stability of individual localizations and develop an efficient optimization algorithm to compute WIF. We demonstrate the advantage of WIF in accurately quantifying imaging artifacts in high-density reconstruction of a tubulin network. WIF represents an advance in quantifying systematic errors with unknown and complex distributions, …


System Optimization And Iterative Image Reconstruction In Photoacoustic Computed Tomography For Breast Imaging, Yang Lou Dec 2017

System Optimization And Iterative Image Reconstruction In Photoacoustic Computed Tomography For Breast Imaging, Yang Lou

McKelvey School of Engineering Theses & Dissertations

Photoacoustic computed tomography(PACT), also known as optoacoustic tomography (OAT), is an emerging imaging technique that has developed rapidly in recent years. The combination of the high optical contrast and the high acoustic resolution of this hybrid imaging technique makes it a promising candidate for human breast imaging, where conventional imaging techniques including X-ray mammography, B-mode ultrasound, and MRI suffer from low contrast, low specificity for certain breast types, and additional risks related to ionizing radiation. Though significant works have been done to push the frontier of PACT breast imaging, it is still challenging to successfully build a PACT breast imaging …


A General Framework Of Large-Scale Convex Optimization Using Jensen Surrogates And Acceleration Techniques, Soysal Degirmenci May 2016

A General Framework Of Large-Scale Convex Optimization Using Jensen Surrogates And Acceleration Techniques, Soysal Degirmenci

McKelvey School of Engineering Theses & Dissertations

In a world where data rates are growing faster than computing power, algorithmic acceleration based on developments in mathematical optimization plays a crucial role in narrowing the gap between the two. As the scale of optimization problems in many fields is getting larger, we need faster optimization methods that not only work well in theory, but also work well in practice by exploiting underlying state-of-the-art computing technology.

In this document, we introduce a unified framework of large-scale convex optimization using Jensen surrogates, an iterative optimization method that has been used in different fields since the 1970s. After this general treatment, …