Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 23 of 23

Full-Text Articles in Physical Sciences and Mathematics

Kcnq1/Kcne1 Interaction In The Cardiac Iks Channel And Its Physiological Consequences, Jiajing Xu Dec 2018

Kcnq1/Kcne1 Interaction In The Cardiac Iks Channel And Its Physiological Consequences, Jiajing Xu

McKelvey School of Engineering Theses & Dissertations

Dynamic conformational changes of ion channel proteins during activation gating determine their function as carriers of current. The relationship between these molecular movements and channel function over the physiological timescale of the action potential (AP) has not been fully established due to limitations of existing techniques. We constructed a library of possible cardiac IKs protein conformations and applied a combination of protein segmentation and energy linearization to study this relationship computationally. Simulations reproduced the effects of the beta-subunit (KCNE1) on the alpha-subunit (KCNQ1) dynamics and function, observed in experiments. Mechanistically, KCNE1 increased the probability of “visiting” conducting pore conformations on …


Nanopower Analog Frontends For Cyber-Physical Systems, Kenji Aono Dec 2018

Nanopower Analog Frontends For Cyber-Physical Systems, Kenji Aono

McKelvey School of Engineering Theses & Dissertations

In a world that is increasingly dominated by advances made in digital systems, this work will explore the exploiting of naturally occurring physical phenomena to pave the way towards a self-powered sensor for Cyber-Physical Systems (CPS). In general, a sensor frontend can be broken up into a handful of basic stages: transduction, filtering, energy conversion, measurement, and interfacing. One analog artifact that was investigated for filtering was the physical phenomenon of hysteresis induced in current-mode biquads driven near or at their saturation limit. Known as jump resonance, this analog construct facilitates a higher quality factor to be brought about without …


Radiolabeled Nanohydroxyapatite As A Platform For The Development Of New Pet Imaging Agents, Stacy Lee Queern Dec 2018

Radiolabeled Nanohydroxyapatite As A Platform For The Development Of New Pet Imaging Agents, Stacy Lee Queern

Arts & Sciences Electronic Theses and Dissertations

Positron emission tomography (PET) imaging utilizes drugs labeled with positron emitters to target and evaluate different biological processes occurring in the body. Tailoring medicine to the individual allows for higher quality of care with better diagnosis and treatment and is a key purpose for advancing research into developing new platforms for PET imaging agents. A PET nuclide of high interest for the development of these agents is 89Zr. This can be attributed to the long half-life of 3.27 days and low positron energy of 89Zr.

In this work, we developed a production method for 89Zr using Y sputtered coins that …


Tunable Electronic And Optical Properties Of Low-Dimensional Materials, Shiyuan Gao Dec 2018

Tunable Electronic And Optical Properties Of Low-Dimensional Materials, Shiyuan Gao

Arts & Sciences Electronic Theses and Dissertations

Two-dimensional (2D) materials with single or a few atomic layers, such as graphene, hexagonal boron nitride (h-BN) and transition metal dichalcogenides (TMDCs), and the heterostructures or one-dimensional (1D) nanostructures they form, have attracted much attention recently as unique platforms for studying many condensed-matter phenomena and holds great potentials for nanoelectronics and optoelectronic applications. Apart from their unique intrinsic properties which has been intensively studied for over a decade by now, they also allow external control of many degrees of freedom, such as electrical gating, doping and layer stacking. In this thesis, I present a theoretical study of the electronic and …


Linking Structure And Dynamics In Metallic Liquids: A Combined Experimental And Molecular Dynamics Approach, Robert Ashcraft Dec 2018

Linking Structure And Dynamics In Metallic Liquids: A Combined Experimental And Molecular Dynamics Approach, Robert Ashcraft

Arts & Sciences Electronic Theses and Dissertations

A major outstanding problem in condensed matter physics is the nature of the glass transition, in which a rapidly cooled liquid can bypass the transition into a crystalline state and the liquid structure is "frozen-in" due to kinetic arrest. To characterize the fundamental features behind this transition the liquid, both in the high temperature (equilibrium) and supercooled state, needs to be better understood. By examining the relationship between structure and dynamics a better characterization of the liquid state and a determination of the mechanisms that are ultimately important for the formation of the glass can be gained. In this dissertation, …


Towards Engineering Advanced Nanomaterials: Elucidating Fundamental Particle Behavior In Water And Critical Sorption Dynamics, Changwoo Kim Dec 2018

Towards Engineering Advanced Nanomaterials: Elucidating Fundamental Particle Behavior In Water And Critical Sorption Dynamics, Changwoo Kim

McKelvey School of Engineering Theses & Dissertations

As advanced nanomaterials, inorganic-organic nano composites have received great interest as potential platform (nano) structures for sensor, catalyst, sorbent, and environmental applications. Here, my Ph.D. research has focused on the design, synthesis, and characterization of advanced water-stable engineered metal-oxide nanoparticles functionalized by organic frames for environmental applications. For the environmental applications, I have evaluated particleoptimized sorption processes for the remediation and separation of arsenic, chromium, and uranium under environmentally relevant conditions. More specifically, I have explored the critical role of organic coating on sorption mechanisms and performances using engineered iron oxide -based, manganese oxide -based, and manganese ferrite -based (core) …


Mechanisms Of Calcium Phosphate Mineralization On Biological Interfaces And Their Engineering Applications, Doyoon Kim Dec 2018

Mechanisms Of Calcium Phosphate Mineralization On Biological Interfaces And Their Engineering Applications, Doyoon Kim

McKelvey School of Engineering Theses & Dissertations

All living organisms utilize phosphorus (P) as an essential component of their cell membranes, DNA and RNA, and adenosine triphosphate. Bones, in addition to bearing loads, play an important role in balancing P levels in our bodies. In bones, a network of collagen templates and calcium phosphate (CaP) nanocrystals builds hierarchical levels, from nano- to macroscale. Within this architecture, the thermodynamic properties of CaP minerals are influential. Despite the importance of nucleation, growth, and crystallization in collagen structures for tissue development, little kinetic study of these processes has been conducted due to the limited in situ techniques for monitoring these …


Development And Application Of Hybrid Wray-Agarwal Turbulence Model And Large-Eddy Simulation, Xu Han Aug 2018

Development And Application Of Hybrid Wray-Agarwal Turbulence Model And Large-Eddy Simulation, Xu Han

McKelvey School of Engineering Theses & Dissertations

Rapid development in computing power in past five decades along with the development and progress in building blocks of Computational Fluid Dynamics (CFD) technology has made CFD an indispensable tool for modern engineering analysis and design of fluid-based products and systems. For CFD analysis, Reynolds-Averaged Navier-Stokes (RANS) equations are currently the most widely used fluid equations in the industry. RANS methods require modeling of turbulence effect (i.e. turbulence modeling) based on empirical relations and therefore often produce low accuracy results for many flows. In recent years, the Large Eddy Simulation (LES) approach has been developed which has shown promise of …


Spin Alignment Generated In Inelastic Nuclear Reactions, Daniel Hoff Aug 2018

Spin Alignment Generated In Inelastic Nuclear Reactions, Daniel Hoff

Arts & Sciences Electronic Theses and Dissertations

The spin alignment of inelastically excited 7Li projectiles, when the target remains in its ground state, was determined through angular-correlation measurements between the breakup fragments of 7Li_ (_ + t). It was found that 7Li_ is largely aligned along the beam axis (longitudinal) in this type of inelastic reaction, regardless of the target. This longitudinal alignment is well described by DWBA calculations, which can be explained by an angular-momentum-excitation-energy mismatch condition. These calculations also explain the longitudinal spin alignment of excited nuclei in several other systems, showing the phenomenon is more general. The experiment involving 7Li was performed at the …


Concurrency Platforms For Real-Time And Cyber-Physical Systems, David Ferry Aug 2018

Concurrency Platforms For Real-Time And Cyber-Physical Systems, David Ferry

McKelvey School of Engineering Theses & Dissertations

Parallel processing is an important way to satisfy the increasingly demanding computational needs of modern real-time and cyber-physical systems, but existing parallel computing technologies primarily emphasize high-throughput and average-case performance metrics, which are largely unsuitable for direct application to real-time, safety-critical contexts. This work contrasts two concurrency platforms designed to achieve predictable worst case parallel performance for soft real-time workloads with millisecond periods and higher. One of these is then the basis for the CyberMech platform, which enables parallel real-time computing for a novel yet representative application called Real-Time Hybrid Simulation (RTHS). RTHS combines demanding parallel real-time computation with real-time …


Self-Powered Time-Keeping And Time-Of-Occurrence Sensing, Liang Zhou Aug 2018

Self-Powered Time-Keeping And Time-Of-Occurrence Sensing, Liang Zhou

McKelvey School of Engineering Theses & Dissertations

Self-powered and passive Internet-of-Things (IoT) devices (e.g. RFID tags, financial assets, wireless sensors and surface-mount devices) have been widely deployed in our everyday and industrial applications. While diverse functionalities have been implemented in passive systems, the lack of a reference clock limits the design space of such devices used for applications such as time-stamping sensing, recording and dynamic authentication. Self-powered time-keeping in passive systems has been challenging because they do not have access to continuous power sources. While energy transducers can harvest power from ambient environment, the intermittent power cannot support continuous operation for reference clocks. The thesis of this …


In Vivo Vascular Imaging With Photoacoustic Microscopy, Hsun-Chia Hsu Aug 2018

In Vivo Vascular Imaging With Photoacoustic Microscopy, Hsun-Chia Hsu

McKelvey School of Engineering Theses & Dissertations

Photoacoustic (PA) tomography (PAT) has received extensive attention in the last decade for its capability to provide label-free structural and functional imaging in biological tissue with highly scalable spatial resolution and penetration depth. Compared to modern optical modalities, PAT offers speckle-free images and is more sensitive to optical absorption contrast (with 100% relative sensitivity). By implementing different regimes of optical wavelength, PAT can be used to image diverse light-absorbing biomolecules. For example, hemoglobin is of particular interest in the visible wavelength regime owing to its dominant absorption, and lipids and water are more commonly studied in the near-infrared regime.

In …


Robust Engineering Of Dynamic Structures In Complex Networks, Walter Botongo Bomela Aug 2018

Robust Engineering Of Dynamic Structures In Complex Networks, Walter Botongo Bomela

McKelvey School of Engineering Theses & Dissertations

Populations of nearly identical dynamical systems are ubiquitous in natural and engineered systems, in which each unit plays a crucial role in determining the functioning of the ensemble. Robust and optimal control of such large collections of dynamical units remains a grand challenge, especially, when these units interact and form a complex network. Motivated by compelling practical problems in power systems, neural engineering and quantum control, where individual units often have to work in tandem to achieve a desired dynamic behavior, e.g., maintaining synchronization of generators in a power grid or conveying information in a neuronal network; in this dissertation, …


Instrumentation For Cryogenic Dynamic Nuclear Polarization And Electron Decoupling In Rotating Solids, Faith Joellen Scott Aug 2018

Instrumentation For Cryogenic Dynamic Nuclear Polarization And Electron Decoupling In Rotating Solids, Faith Joellen Scott

Arts & Sciences Electronic Theses and Dissertations

Dynamic nuclear polarization (DNP) increases the sensitivity of nuclear magnetic resonance (NMR) using the higher polarization of electron radical spins compared to nuclear spins. The addition of electron radicals for DNP to the sample can cause hyperfine broadening, which decreases the resolution of the NMR resonances due to hyperfine interactions between electron and nuclear spins. Electron decoupling has been shown to attenuate the effects of hyperfine coupling in rotating solids. Magic angle spinning (MAS) DNP with electron decoupling requires a high electron Rabi frequency provided by a high-power microwave source such as a frequency-agile gyrotron. This dissertation describes the development …


Security Services Using Blockchains: A State Of The Art Survey, Maeda Zolanvari, Aiman Erbad, Raj Jain, Mohammed Samaka Aug 2018

Security Services Using Blockchains: A State Of The Art Survey, Maeda Zolanvari, Aiman Erbad, Raj Jain, Mohammed Samaka

All Computer Science and Engineering Research

This article surveys blockchain-based approaches for several security services. These services include authentication, confidentiality, privacy and access control list (ACL), data and resource provenance, and integrity assurance. All these services are critical for the current distributed applications, especially due to the large amount of data being processed over the networks and the use of cloud computing. Authentication ensures that the user is who he/she claims to be. Confidentiality guarantees that data cannot be read by unauthorized users. Privacy provides the users the ability to control who can access their data. Provenance allows an efficient tracking of the data and resources …


Super‐Resolution Imaging Of Amyloid Structures Over Extended Times By Using Transient Binding Of Single Thioflavin T Molecules, Kevin Spehar, Tianben Ding, Yuanzi Sun, Niraja Kedia, Jin Lu, George R. Nahass, Matthew D. Lew, Jan Bieschke Jun 2018

Super‐Resolution Imaging Of Amyloid Structures Over Extended Times By Using Transient Binding Of Single Thioflavin T Molecules, Kevin Spehar, Tianben Ding, Yuanzi Sun, Niraja Kedia, Jin Lu, George R. Nahass, Matthew D. Lew, Jan Bieschke

Electrical & Systems Engineering Publications and Presentations

Oligomeric amyloid structures are crucial therapeutic targets in Alzheimer's and other amyloid diseases. However, these oligomers are too small to be resolved by standard light microscopy. We have developed a simple and versatile tool to image amyloid structures by using thioflavin T without the need for covalent labeling or immunostaining. The dynamic binding of single dye molecules generates photon bursts that are used for fluorophore localization on a nanometer scale. Thus, photobleaching cannot degrade image quality, allowing for extended observation times. Super‐resolution transient amyloid binding microscopy promises to directly image native amyloid by using standard probes and record amyloid dynamics …


Imaging The Three-Dimensional Orientation And Rotational Mobility Of Fluorescent Emitters Using The Tri-Spot Point Spread Function, Oumeng Zhang, Jin Lu, Tianben Ding, Matthew D. Lew Jun 2018

Imaging The Three-Dimensional Orientation And Rotational Mobility Of Fluorescent Emitters Using The Tri-Spot Point Spread Function, Oumeng Zhang, Jin Lu, Tianben Ding, Matthew D. Lew

Electrical & Systems Engineering Publications and Presentations

Fluorescence photons emitted by single molecules contain rich information regarding their rotational motions, but adapting single-molecule localization microscopy (SMLM) to measure their orientations and rotational mobilities with high precision remains a challenge. Inspired by dipole radiation patterns, we design and implement a Tri-spot point spread function (PSF) that simultaneously measures the three-dimensional orientation and the rotational mobility of dipole-like emitters across a large field of view. We show that the orientation measurements done using the Tri-spot PSF are sufficiently accurate to correct the anisotropy-based localization bias, from 30 nm to 7 nm, in SMLM. We further characterize the emission anisotropy …


Developing Photoacoustic Tomography Devices For Translational Medicine And Basic Science Research, Tsz Wai Wong May 2018

Developing Photoacoustic Tomography Devices For Translational Medicine And Basic Science Research, Tsz Wai Wong

McKelvey School of Engineering Theses & Dissertations

Photoacoustic (PA) tomography (PAT) provides volumetric images of biological tissue with scalable spatial resolutions and imaging depths, while preserving the same imaging contrast—optical absorption. Taking the advantage of its 100% sensitivity to optical absorption, PAT has been widely applied in structural, functional, and molecular imaging, with both endogenous and exogenous contrasts, at superior depths than pure optical methods. Intuitively, hemoglobin has been the most commonly studied biomolecule in PAT due to its strong absorption in the visible wavelength regime.

One of the main focuses of this dissertation is to investigate an underexplored wavelength regime—ultraviolet (UV), which allows us to image …


Developing Wavefront Shaping Techniques For Focusing Through Highly Dynamic Scattering Media, Ashton Hemphill May 2018

Developing Wavefront Shaping Techniques For Focusing Through Highly Dynamic Scattering Media, Ashton Hemphill

McKelvey School of Engineering Theses & Dissertations

One of the prime limiting factors of optical imaging in biological applications is the diffusion of light by tissue, which prevents focusing at depths greater than the optical diffusion limit of ~1 mm in soft tissue. This greatly restricts the utility of optical diagnostic and therapeutic techniques, such as optogenetics, microsurgery, optical tweezing, and phototherapy of deep tissue, which require focused light in order to function. Wavefront shaping extends the depth at which optical focusing may be achieved by compensating for phase distortions induced by scattering, allowing for focusing through constructive interference.

However, due to physiological motion, scattering of light …


Fluorescence Guided Tumor Imaging: Foundations For Translational Applications, Jessica P. Miller May 2018

Fluorescence Guided Tumor Imaging: Foundations For Translational Applications, Jessica P. Miller

McKelvey School of Engineering Theses & Dissertations

Optical imaging for medical applications is a growing field, and it has the potential to improve medical outcomes through its increased sensitivity and specificity, lower cost, and small instrumentation footprint as compared to other imaging modalities. The method holds great promise, ranging from direct clinical use as a diagnostic or therapeutic tool, to pre-clinical applications for increased understanding of pathology. Additionally, optical imaging uses non-ionizing radiation which is safe for patients, so it can be used for repeated imaging procedures to monitor therapy, guide treatment, and provide real-time feedback. The versatile features of fluorescence-based optical imaging make it suited for …


Allocating Interventions Based On Counterfactual Predictions: A Case Study On Homelessness Services, Amanda R. Kube May 2018

Allocating Interventions Based On Counterfactual Predictions: A Case Study On Homelessness Services, Amanda R. Kube

McKelvey School of Engineering Theses & Dissertations

Modern statistical and machine learning methods are increasingly capable of modeling individual or personalized treatment effects by predicting counterfactual outcomes. These counterfactual predictions could be used to allocate different interventions across populations based on individual characteristics. In many domains, like social services, the availability of possible interventions can be severely resource limited. This thesis considers possible improvements to the allocation of such services in the context of homelessness service provision in a major metropolitan area. Using data from the homeless system, I show potential for substantial predicted benefits in terms of reducing the number of families who experience repeat episodes …


Numerical Simulation Of A High Strain Rate Biaxial Compression Apparatus, Michael Lagieski Apr 2018

Numerical Simulation Of A High Strain Rate Biaxial Compression Apparatus, Michael Lagieski

McKelvey School of Engineering Theses & Dissertations

Few experimental methods today are capable of exploring the strength of materials at high strain rates (105 s-1). Those that are capable, such as the Split Hopkinson Bar, Taylor Anvil and Plate Impact suffer from instability and are generally limited to one dimensional wave propagation. Of particular interest is material response under biaxial compression, similar to that seen in inertial confinement fusion. Laser fusion fuel pellets typically undergo large strain rates as well as plastic deformation and non-linear behavior. This work briefly outlines an experimental procedure designed to replicate these large strain rates under biaxial compression using …


Measuring 3d Molecular Orientation And Rotational Mobility Using A Tri-Spot Point Spread Function, Oumeng Zhang, Tianben Ding, Jin Lu, Hesam Mazidi, Matthew D. Lew Feb 2018

Measuring 3d Molecular Orientation And Rotational Mobility Using A Tri-Spot Point Spread Function, Oumeng Zhang, Tianben Ding, Jin Lu, Hesam Mazidi, Matthew D. Lew

Electrical & Systems Engineering Publications and Presentations

We present a method to measure the molecular orientation and rotational mobility of single-molecule emitters by designing and implementing a Tri-spot point spread function. It can measure all degrees of freedom related to molecular orientation and rotational mobility. Its design is optimized by maximizing the theoretical limit of its measurement precision. We evaluate the precision and accuracy of the Tri-spot PSF by measuring the orientation and effective rotational mobility of single fluorescent molecules embedded in a polymer matrix.