Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Engineering

University of Kentucky

Series

Keyword
Publication Year
Publication

Articles 1 - 30 of 323

Full-Text Articles in Physical Sciences and Mathematics

Characteristics And Assessing Biological Risks Of Airborne Bacteria In Waste Sorting Plant, Abbas Norouzian Baghani, Somayeh Golbaz, Gholamreza Ebrahimzadeh, Marcelo I. Guzman, Mahdieh Delikhoon, Mehdi Jamshidi Rastani, Abdullah Barkhordari, Ramin Nabizadeh Feb 2022

Characteristics And Assessing Biological Risks Of Airborne Bacteria In Waste Sorting Plant, Abbas Norouzian Baghani, Somayeh Golbaz, Gholamreza Ebrahimzadeh, Marcelo I. Guzman, Mahdieh Delikhoon, Mehdi Jamshidi Rastani, Abdullah Barkhordari, Ramin Nabizadeh

Chemistry Faculty Publications

Examining the concentration and types of airborne bacteria in waste paper and cardboard sorting plants (WPCSP) is an urgent matter to inform policy makers about the health impacts on exposed workers. Herein, we collected 20 samples at 9 points of a WPCSP every 6 winter days, and found that the most abundant airborne bacteria were positively and negatively correlated to relative humidity and temperature, respectively. The most abundant airborne bacteria (in units of CFU m−3) were: Staphylococcus sp. (72.4) > Micrococcus sp. (52.2) > Bacillus sp. (30.3) > Enterococcus sp. (24.0) > Serratia marcescens (20.1) > E. coli (19.1) > Pseudomonas sp. (16.0) > Nocardia …


Volumetric Lattice Boltzmann Method For Wall Stresses Of Image-Based Pulsatile Flows, Xiaoyu Zhang, Joan Gomez-Paz, Xi Chen, James M. Mcdonough, Md Mahfuzul Islam, Yiannis Andreopoulos, Luoding Zhu, Huidan Yu Feb 2022

Volumetric Lattice Boltzmann Method For Wall Stresses Of Image-Based Pulsatile Flows, Xiaoyu Zhang, Joan Gomez-Paz, Xi Chen, James M. Mcdonough, Md Mahfuzul Islam, Yiannis Andreopoulos, Luoding Zhu, Huidan Yu

Mechanical Engineering Faculty Publications

Image-based computational fluid dynamics (CFD) has become a new capability for determining wall stresses of pulsatile flows. However, a computational platform that directly connects image information to pulsatile wall stresses is lacking. Prevailing methods rely on manual crafting of a hodgepodge of multidisciplinary software packages, which is usually laborious and error-prone. We present a new computational platform, to compute wall stresses in image-based pulsatile flows using the volumetric lattice Boltzmann method (VLBM). The novelty includes: (1) a unique image processing to extract flow domain and local wall normality, (2) a seamless connection between image extraction and VLBM, (3) an en-route …


Machine Learning Approach To Simulate Soil Co2 Fluxes Under Cropping Systems, Toby A. Adjuik, Sarah C. Davis Jan 2022

Machine Learning Approach To Simulate Soil Co2 Fluxes Under Cropping Systems, Toby A. Adjuik, Sarah C. Davis

Biosystems and Agricultural Engineering Graduate Research

With the growing number of datasets to describe greenhouse gas (GHG) emissions, there is an opportunity to develop novel predictive models that require neither the expense nor time required to make direct field measurements. This study evaluates the potential for machine learning (ML) approaches to predict soil GHG emissions without the biogeochemical expertise that is required to use many current models for simulating soil GHGs. There are ample data from field measurements now publicly available to test new modeling approaches. The objective of this paper was to develop and evaluate machine learning (ML) models using field data (soil temperature, soil …


Numerical Investigation On The Effect Of Spectral Radiative Heat Transfer Within An Ablative Material, Raghava S. C. Davuluri, Rui Fu, Kaveh A. Tagavi, Alexandre Martin Dec 2021

Numerical Investigation On The Effect Of Spectral Radiative Heat Transfer Within An Ablative Material, Raghava S. C. Davuluri, Rui Fu, Kaveh A. Tagavi, Alexandre Martin

Mechanical Engineering Faculty Publications

The spectral radiative heat flux could impact the material response. In order to evaluate it, a coupling scheme between KATS - MR and P1 approximation model of radiation transfer equation (RTE) is constructed and used. A Band model is developed that divides the spectral domain into small bands of unequal widths. Two verification studies are conducted: one by comparing the simulation computed by the Band model with pure conduction results and the other by comparing with similar models of RTE. The comparative results from the verification studies indicate that the Band model is computationally efficient and can be used to …


A Literature Review Of Wetland Treatment Systems Used To Treat Runoff Mixtures Containing Antibiotics And Pesticides From Urban And Agricultural Landscapes, Emily R. Nottingham, Tiffany L. Messer Dec 2021

A Literature Review Of Wetland Treatment Systems Used To Treat Runoff Mixtures Containing Antibiotics And Pesticides From Urban And Agricultural Landscapes, Emily R. Nottingham, Tiffany L. Messer

Biosystems and Agricultural Engineering Faculty Publications

Wetland treatment systems are used extensively across the world to mitigate surface runoff. While wetland treatment for nitrogen mitigation has been comprehensively reviewed, the implications of common-use pesticides and antibiotics on nitrogen reduction remain relatively unreviewed. Therefore, this review seeks to comprehensively assess the removal of commonly used pesticides and antibiotics and their implications for nitrogen removal in wetland treatment systems receiving non-point source runoff from urban and agricultural landscapes. A total of 181 primary studies were identified spanning 37 countries. Most of the reviewed publications studied pesticides (n = 153) entering wetlands systems, while antibiotics (n = 29) had …


Hydrocracking Of Octacosane And Cobalt Fischer–Tropsch Wax Over Nonsulfided Nimo And Pt-Based Catalysts, Wenping Ma, Jungshik Kang, Gary Jacobs, Shelley D. Hopps, Burtron H. Davis Sep 2021

Hydrocracking Of Octacosane And Cobalt Fischer–Tropsch Wax Over Nonsulfided Nimo And Pt-Based Catalysts, Wenping Ma, Jungshik Kang, Gary Jacobs, Shelley D. Hopps, Burtron H. Davis

Center for Applied Energy Research Faculty and Staff Publications

The effect of activation environment (N2, H2 and H2S/H2) on the hydrocracking performance of a NiMo/Al catalyst was studied at 380 °C and 3.5 MPa using octacosane (C28). The catalyst physical structure and acidity were characterized by BET, XRD, SEM-EDX and FTIR techniques. The N2 activation generated more active nonsulfided NiMo/Al catalyst relative to the H2 or H2S activation (XC28, 70–80% versus 6–10%). For a comparison, a NiMo/Si-Al catalyst was also tested after normal H2 activation and showed higher activity at the same process …


Bone Quality And Fractures In Women With Osteoporosis Treated With Bisphosphonates For 1 To 14 Years, Hartmut H. Malluche, Jin Chen, Florence Lima, Lucas J. Liu, Marie-Claude Monier-Faugere, David A. Pienkowski Sep 2021

Bone Quality And Fractures In Women With Osteoporosis Treated With Bisphosphonates For 1 To 14 Years, Hartmut H. Malluche, Jin Chen, Florence Lima, Lucas J. Liu, Marie-Claude Monier-Faugere, David A. Pienkowski

Internal Medicine Faculty Publications

Oral bisphosphonates are the primary medication for osteoporosis, but concerns exist regarding potential bone-quality changes or low-energy fractures. This cross-sectional study used artificial intelligence methods to analyze relationships among bisphosphonate treatment duration, a wide variety of bone-quality parameters, and low-energy fractures. Fourier transform infrared spectroscopy and histomorphometry quantified bone-quality parameters in 67 osteoporotic women treated with oral bisphosphonates for 1 to 14 years. Artificial intelligence methods established two models relating bisphosphonate treatment duration to bone-quality changes and to low-energy clinical fractures. The model relating bisphosphonate treatment duration to bone quality demonstrated optimal performance when treatment durations of 1 to 8 …


Innovative Computational Methods For Pharmaceutical Problem Solving A Review Part I: The Drug Development Process, Heather R. Campbell, Robert A. Lodder Aug 2021

Innovative Computational Methods For Pharmaceutical Problem Solving A Review Part I: The Drug Development Process, Heather R. Campbell, Robert A. Lodder

Pharmaceutical Sciences Faculty Publications

Computational methods have provided pharmaceutical scientists and engineers a means to go beyond what's possible with experimental testing alone. Providing a means to study active pharmaceutical ingredients (API), excipients, and drug interactions at or near-atomic levels. This paper provides a review of this and other innovative computational methods used for solving pharmaceutical problems throughout the drug development process. Part one of two this paper will emphasize the role of computational methods and game theory in solving pharmaceutical challenges.


Innovative Computational Methods For Pharmaceutical Problem Solving A Review Part Ii: Serious Gaming, Heather R. Campbell, Robert A. Lodder Aug 2021

Innovative Computational Methods For Pharmaceutical Problem Solving A Review Part Ii: Serious Gaming, Heather R. Campbell, Robert A. Lodder

Pharmaceutical Sciences Faculty Publications

Serious gaming has begun to take a foothold in pharmaceutical problem-solving. Companies such as Akili's Interactive are seeing success in the form of positive clinical trial results and FDA approval of digital therapeutics. Academic researchers have begun exploring novel uses for serious gaming in the way of protein design and more with promising results. This paper provides a review of such topics in addition to topics of game repurposing- repurposing a game originally intended for entertainment into a serious game-such as Minecraft and America's Army. Reviewing these topics this paper shows the utility of serious gaming as a tool for …


Fully Coupled Internal Radiative Heat Transfer For The 3d Material Response Of Heat Shield, Raghava S. C. Davuluri, Rui Fu, Kaveh A. Tagavi, Alexandre Martin Jul 2021

Fully Coupled Internal Radiative Heat Transfer For The 3d Material Response Of Heat Shield, Raghava S. C. Davuluri, Rui Fu, Kaveh A. Tagavi, Alexandre Martin

Mechanical Engineering Faculty Publications

The radiative transfer equation (RTE) is strongly coupled to the material response code KATS. A P-1 approximation model of RTE is used to account for radiation heat transfer within the material. First, the verification of the RTE model is performed by comparing the numerical and analytical solutions. Next, the coupling scheme is validated by comparing the temperature profiles of pure conduction and conduction coupled with radiative emission. The validation study is conducted on Marschall et al. cases (radiant heating, arc-jet heating, and space shuttle entry), 3D Block, 2D IsoQ sample, and Stardust Return Capsule. The validation results agree well for …


Life Cycle Assessment Of Bioplastics And Food Waste Disposal Methods, Shakira R. Hobbs, Tyler M. Harris, William J. Barr, Amy E. Landis Jun 2021

Life Cycle Assessment Of Bioplastics And Food Waste Disposal Methods, Shakira R. Hobbs, Tyler M. Harris, William J. Barr, Amy E. Landis

Civil Engineering Faculty Publications

The environmental impacts of five waste management scenarios for polylactic acid (PLA)-based bioplastics and food waste were quantified using life cycle assessment. Laboratory experiments have demonstrated the potential for a pretreatment process to accelerate the degradation of bioplastics and were modeled in two of the five scenarios assessed. The five scenarios analyzed in this study were: (1a) Anaerobic digestion (1b) Anaerobic digestion with pretreatment; (2a) Compost; (2a) Compost with pretreatment; (3) Landfill. Results suggested that food waste and pretreated bioplastics disposed of with an anaerobic digester offers life cycle and environmental net total benefits (environmental advantages/offsets) in several areas: ecotoxicity …


Suppressing Bias Stress Degradation In High Performance Solution Processed Organic Transistors Operating In Air, Hamna F. Iqbal, Qianxiang Ai, Karl J. Thorley, Hu Chen, Iain Mcculloch, Chad Risko, John E. Anthony, Oana D. Jurchescu Apr 2021

Suppressing Bias Stress Degradation In High Performance Solution Processed Organic Transistors Operating In Air, Hamna F. Iqbal, Qianxiang Ai, Karl J. Thorley, Hu Chen, Iain Mcculloch, Chad Risko, John E. Anthony, Oana D. Jurchescu

Chemistry Faculty Publications

Solution processed organic field effect transistors can become ubiquitous in flexible optoelectronics. While progress in material and device design has been astonishing, low environmental and operational stabilities remain longstanding problems obstructing their immediate deployment in real world applications. Here, we introduce a strategy to identify the most probable and severe degradation pathways in organic transistors and then implement a method to eliminate the main sources of instabilities. Real time monitoring of the energetic distribution and transformation of electronic trap states during device operation, in conjunction with simulations, revealed the nature of traps responsible for performance degradation. With this information, we …


Usgs 104b Grant Program: Kentucky’S Annual Report Fy 2019, Emily Koyagi, Steve Evans, Lindell Ormsbee Apr 2021

Usgs 104b Grant Program: Kentucky’S Annual Report Fy 2019, Emily Koyagi, Steve Evans, Lindell Ormsbee

KWRRI Annual Technical Reports (USGS’s 104b Grant Program)

The Kentucky Water Resources Research Institute (KWRRI) is one of 54 Water Resource Research Institutes or Centers located throughout the United States and its territories. The state water resources research institutes are authorized by the Water Resources Research Act of 1964 (P.L. 88-379 codified at 42 U.S.C. 10301 et seq.) through the Water Resources Research Institutes Program administered by the United States Geological Survey (USGS) and organized as the National Institutes for Water Resources (NIWR). NIWR cooperates with the US Geological Survey (USGS) to support, coordinate and facilitate research.

The KWRRI administers several state-level USGS grant programs for water research …


Possibilities Of Using Silicate Rock Powder: An Overview, Claudete Gindri Ramos, James C. Hower, Erika Blanco, Marcos Leandro Silva Oliveira, Suzi Huff Theodoro Mar 2021

Possibilities Of Using Silicate Rock Powder: An Overview, Claudete Gindri Ramos, James C. Hower, Erika Blanco, Marcos Leandro Silva Oliveira, Suzi Huff Theodoro

Center for Applied Energy Research Faculty and Staff Publications

This study evaluates the on use of crushed rocks (remineralizers) to increase soil fertility levels and which contributed to increase agricultural productivity, recovery of degraded areas, decontamination of water, and carbon sequestration. The use of these geological materials is part of the assumptions of rock technology and, indirectly, facilitates the achievement of sustainable development goals related to soil management, climate change, and the preservation of water resources. Research over the past 50 years on silicate rocks focused on soil fertility management and agricultural productivity. More recently, the combined use with microorganisms and organic correctives have shown positive results to mitigate …


Volcanic Emissions And Atmospheric Pollution: A Study Of Nanoparticles, Erika M. Trejos, Luis F. O. Silva, James C. Hower, Eriko M. M. Flores, Carlos Mario González, Jorge E. Pachón, Beatriz H. Aristizábal Mar 2021

Volcanic Emissions And Atmospheric Pollution: A Study Of Nanoparticles, Erika M. Trejos, Luis F. O. Silva, James C. Hower, Eriko M. M. Flores, Carlos Mario González, Jorge E. Pachón, Beatriz H. Aristizábal

Center for Applied Energy Research Faculty and Staff Publications

The influence of emissions of an active volcano on the composition of nanoparticles and ultrafine road dust was identified in an urban area of the Andes. Although many cities are close to active volcanoes, few studies have evaluated their influence in road dust composition. Air quality in urban areas is significantly affected by non-exhaust emissions (e.g. road dust, brake wear, tire wear), however, natural sources such as volcanoes also impact the chemical composition of the particles. In this study, elements from volcanic emissions such as Si > Al > Fe > Ca > K > Mg, and Si—Al with K were identified as complex hydrates. …


Numerical Reconstruction Of Spalled Particle Trajectories In An Arc-Jet Environment, Raghava S. C. Davuluri, Sean C. C. Bailey, Kaveh A. Tagavi, Alexandre Martin Jan 2021

Numerical Reconstruction Of Spalled Particle Trajectories In An Arc-Jet Environment, Raghava S. C. Davuluri, Sean C. C. Bailey, Kaveh A. Tagavi, Alexandre Martin

Mechanical Engineering Faculty Publications

To evaluate the effects of spallation on ablative material, it is necessary to evaluate the mass loss. To do so, a Lagrangian particle trajectory code is used to reconstruct trajectories that match the experimental data for all kinematic parameters. The results from spallation experiments conducted at the NASA HYMETS facility over a wedge sample were used. A data-driven adaptive methodology was used to adapts the ejection parameters until the numerical trajectory matches the experimental data. The preliminary reconstruction results show that the size of the particles seemed to be correlated with the location of the ejection event. The size of …


N-Type Charge Transport In Heavily P-Doped Polymers, Zhiming Liang, Hyun Ho Choi, Xuyi Luo, Tuo Liu, Ashkan Abtahi, Uma Shantini Ramasamy, J. Andrew Hitron, Kyle N. Baustert, Jacob L. Hempel, Alex M. Boehm, Armin Ansary, Douglas R. Strachan, Jianguo Mei, Chad Risko, Vitaly Podzorov, Kenneth R. Graham Jan 2021

N-Type Charge Transport In Heavily P-Doped Polymers, Zhiming Liang, Hyun Ho Choi, Xuyi Luo, Tuo Liu, Ashkan Abtahi, Uma Shantini Ramasamy, J. Andrew Hitron, Kyle N. Baustert, Jacob L. Hempel, Alex M. Boehm, Armin Ansary, Douglas R. Strachan, Jianguo Mei, Chad Risko, Vitaly Podzorov, Kenneth R. Graham

Chemistry Faculty Publications

It is commonly assumed that charge-carrier transport in doped π-conjugated polymers is dominated by one type of charge carrier, either holes or electrons, as determined by the chemistry of the dopant. Here, through Seebeck coefficient and Hall effect measurements, we show that mobile electrons contribute substantially to charge-carrier transport in π-conjugated polymers that are heavily p-doped with strong electron acceptors. Specifically, the Seebeck coefficient of several p-doped polymers changes sign from positive to negative as the concentration of the oxidizing agents FeCl3 or NOBF4 increase, and Hall effect measurements for the same p-doped polymers reveal that …


Review On Carbon Dioxide Utilization For Cycloaddition Of Epoxides By Ionic Liquid-Modified Hybrid Catalysts: Effect Of Influential Parameters And Mechanisms Insight, Jimmy Nelson Appaturi, Rajabathar. Jothi Ramalingam, Muthu Kumaran Gnanamani, Govindasami Periyasami, Prabhakarn Arunachalam, Rohana Adnan, Farook Adam, Mohammed D. Wasmiah, Hamad A. Al‐Lohedan Jan 2021

Review On Carbon Dioxide Utilization For Cycloaddition Of Epoxides By Ionic Liquid-Modified Hybrid Catalysts: Effect Of Influential Parameters And Mechanisms Insight, Jimmy Nelson Appaturi, Rajabathar. Jothi Ramalingam, Muthu Kumaran Gnanamani, Govindasami Periyasami, Prabhakarn Arunachalam, Rohana Adnan, Farook Adam, Mohammed D. Wasmiah, Hamad A. Al‐Lohedan

Center for Applied Energy Research Faculty and Staff Publications

The storage, utilization, and control of the greenhouse (CO2) gas is a topic of interest for researchers in academia and society. The present review article is dedicating to cover the overall role of ionic liquid-modified hybrid materials in cycloaddition reactions. Special emphasis is on the synthesis of various cyclic carbonate using ionic liquid-based modified catalysts. Catalytic activity studies have discussed with respect to process conditions and their effects on conversion and product selectivity for the reaction of cycloaddition of CO2 with styrene oxide. The reaction temperature and the partial pressure of CO2 have found to play …


Biofilm And Cell Adhesion Strength On Dental Implant Surfaces Via The Laser Spallation Technique, James D. Boyd, Arnold J. Stromberg, Craig S. Miller, Martha E. Grady Jan 2021

Biofilm And Cell Adhesion Strength On Dental Implant Surfaces Via The Laser Spallation Technique, James D. Boyd, Arnold J. Stromberg, Craig S. Miller, Martha E. Grady

Statistics Faculty Publications

OBJECTIVE: The aims of this study are to quantify the adhesion strength differential between an oral bacterial biofilm and an osteoblast-like cell monolayer to a dental implant-simulant surface and develop a metric that quantifies the biocompatible effect of implant surfaces on bacterial and cell adhesion.

METHODS: High-amplitude short-duration stress waves generated by laser pulse absorption are used to spall bacteria and cells from titanium substrates. By carefully controlling laser fluence and calibration of laser fluence with applied stress, the adhesion difference between Streptococcus mutans biofilms and MG 63 osteoblast-like cell monolayers on smooth and rough titanium substrates is obtained. The …


Data Generated During The 2018 Lapse-Rate Campaign: An Introduction And Overview, Gijs De Boer, Adam Houston, Jamey D. Jacob, Phillip B. Chilson, Suzanne W. Smith, Brian Argrow, Dale Lawrence, Jack Elston, David Brus, Osku Kemppinen, Petra Klein, Julie K. Lundquist, Sean Waugh, Sean C. C. Bailey, Amy E. Frazier, Michael P. Sama, Christopher Crick, David G. Schmale Iii, James Pinto, Elizabeth A. Pillar-Little, Victoria Natalie, Anders Jensen Dec 2020

Data Generated During The 2018 Lapse-Rate Campaign: An Introduction And Overview, Gijs De Boer, Adam Houston, Jamey D. Jacob, Phillip B. Chilson, Suzanne W. Smith, Brian Argrow, Dale Lawrence, Jack Elston, David Brus, Osku Kemppinen, Petra Klein, Julie K. Lundquist, Sean Waugh, Sean C. C. Bailey, Amy E. Frazier, Michael P. Sama, Christopher Crick, David G. Schmale Iii, James Pinto, Elizabeth A. Pillar-Little, Victoria Natalie, Anders Jensen

Mechanical Engineering Faculty Publications

Unmanned aircraft systems (UASs) offer innovative capabilities for providing new perspectives on the atmosphere, and therefore atmospheric scientists are rapidly expanding their use, particularly for studying the planetary boundary layer. In support of this expansion, from 14 to 20 July 2018 the International Society for Atmospheric Research using Remotely piloted Aircraft (ISARRA) hosted a community flight week, dubbed the Lower Atmospheric Profiling Studies at Elevation – a Remotely-piloted Aircraft Team Experiment (LAPSE-RATE; de Boer et al., 2020a). This field campaign spanned a 1-week deployment to Colorado's San Luis Valley, involving over 100 students, scientists, engineers, pilots, and outreach coordinators. These …


Application Of A Small Unmanned Aerial System To Measure Ammonia Emissions From A Pilot Amine-Co2 Capture System, Travis J. Schuyler, Bradley Irvin, Keemia Abad, Jesse G. Thompson, Kunlei Liu, Marcelo I. Guzman Dec 2020

Application Of A Small Unmanned Aerial System To Measure Ammonia Emissions From A Pilot Amine-Co2 Capture System, Travis J. Schuyler, Bradley Irvin, Keemia Abad, Jesse G. Thompson, Kunlei Liu, Marcelo I. Guzman

Chemistry Faculty Publications

The quantification of atmospheric gases with small unmanned aerial systems (sUAS) is expanding the ability to safely perform environmental monitoring tasks and quickly evaluate the impact of technologies. In this work, a calibrated sUAS is used to quantify the emissions of ammonia (NH3) gas from the exit stack a 0.1 MWth pilot-scale carbon capture system (CCS) employing a 5 M monoethanolamine (MEA) solvent to scrub CO2 from coal combustion flue gas. A comparison of the results using the sUAS against the ion chromatography technique with the EPA CTM-027 method for the standard emission sampling of NH3 …


Literature Review: Global Neonicotinoid Insecticide Occurrence In Aquatic Environments, Josephus F. Borsuah, Tiffany L. Messer, Daniel D. Snow, Steve D. Comfort, Aaron R. Mittelstet Dec 2020

Literature Review: Global Neonicotinoid Insecticide Occurrence In Aquatic Environments, Josephus F. Borsuah, Tiffany L. Messer, Daniel D. Snow, Steve D. Comfort, Aaron R. Mittelstet

Biosystems and Agricultural Engineering Faculty Publications

Neonicotinoids have been the most commonly used insecticides since the early 1990s. Despite their efficacy in improving crop protection and management, these agrochemicals have gained recent attention for their negative impacts on non-target species such as honeybees and aquatic invertebrates. In recent years, neonicotinoids have been detected in rivers and streams across the world. Determining and predicting the exposure potential of neonicotinoids in surface water requires a thorough understanding of their fate and transport mechanisms. Therefore, our objective was to provide a comprehensive review of neonicotinoids with a focus on their fate and transport mechanisms to and within surface waters …


Carbon Sequestration By Reforesting Legacy Grasslands On Coal Mining Sites, James F. Fox, J. Elliott Campbell, Peter M. Acton Dec 2020

Carbon Sequestration By Reforesting Legacy Grasslands On Coal Mining Sites, James F. Fox, J. Elliott Campbell, Peter M. Acton

Civil Engineering Faculty Publications

Future carbon management during energy production will rely on carbon capture and sequestration technology and carbon sequestration methods for offsetting non-capturable losses. The present study quantifies carbon sequestration via reforestation using measurements and modeling for recent and legacy surface coal mining grasslands that are re-restored through tree planting. This paper focuses on a case study of legacy coal mining sites in the southern Appalachia the United States. This five million-hectare region has a surface mining footprint of approximately 12% of the land area, and the reclamation method was primarily grassland. The results of the soil carbon sequestration rates for restored …


Geochemistry, Petrology, And Palynology Of The Princess No. 3 Coal, Greenup County, Kentucky, Madison M. Hood, Cortland F. Eble, James C. Hower, Shifeng Dai Dec 2020

Geochemistry, Petrology, And Palynology Of The Princess No. 3 Coal, Greenup County, Kentucky, Madison M. Hood, Cortland F. Eble, James C. Hower, Shifeng Dai

Center for Applied Energy Research Faculty and Staff Publications

The high volatile C bituminous-rank, Bolsovian-age Princess No. 3 coal, a correlative of the heavily-mined Hazard No. 7 coal and the Peach Orchard and Coalburg Lower Split coals, was investigated three sites at a mine in Greenup County, Kentucky. The coal exhibits a “dulling upwards” trend, with decreasing vitrinite and a greater tendency towards dull clarain and bone lithotypes towards the top of the coal. The relatively vitrinite-rich basal lithotype is marked by a dominance of lycopod tree spores. The palynology transitions upwards to a middle parting co-dominated by tree fern and small lycopod spores and an upper bench dominated …


Atmospheric Measurements With Unmanned Aerial Systems (Uas), Marcelo I. Guzman Nov 2020

Atmospheric Measurements With Unmanned Aerial Systems (Uas), Marcelo I. Guzman

Chemistry Faculty Publications

This Special Issue provides the first literature collection focused on the development and implementation of unmanned aircraft systems (UAS) and their integration with sensors for atmospheric measurements on Earth. The research covered in the Special Issue combines chemical, physical, and meteorological measurements performed in field campaigns as well as conceptual and laboratory work. Useful examples for the development of platforms and autonomous systems for environmental studies are provided, which demonstrate how careful the operation of sensors aboard UAS must be to gather information for remote sensing in the atmosphere. The work serves as a key collection of articles to introduce …


A User Study Of A Wearable System To Enhance Bystanders’ Facial Privacy, Alfredo J. Perez, Sherali Zeadally, Scott Griffith, Luis Y. Matos Garcia, Jaouad A. Mouloud Oct 2020

A User Study Of A Wearable System To Enhance Bystanders’ Facial Privacy, Alfredo J. Perez, Sherali Zeadally, Scott Griffith, Luis Y. Matos Garcia, Jaouad A. Mouloud

Information Science Faculty Publications

The privacy of users and information are becoming increasingly important with the growth and pervasive use of mobile devices such as wearables, mobile phones, drones, and Internet of Things (IoT) devices. Today many of these mobile devices are equipped with cameras which enable users to take pictures and record videos anytime they need to do so. In many such cases, bystanders’ privacy is not a concern, and as a result, audio and video of bystanders are often captured without their consent. We present results from a user study in which 21 participants were asked to use a wearable system called …


Rare Earth-Bearing Particles In Fly Ash Carbons: Examples From The Combustion Of Eastern Kentucky Coals, James C. Hower, John G. Groppo Jr. Sep 2020

Rare Earth-Bearing Particles In Fly Ash Carbons: Examples From The Combustion Of Eastern Kentucky Coals, James C. Hower, John G. Groppo Jr.

Center for Applied Energy Research Faculty and Staff Publications

Graphitic carbons from the combustion of bituminous coals and, perhaps, other coal ranks, tend to capture iron and a number of hazardous elements, including As, Hg, and Se. Rare earth elements in fly ashes occur in minerals, such as monazite, xenotime, and davidite. They also occur in sub-nm particles, probably in a mineral form, within the Al–Si glass on the investigated fly ashes. Just as graphitic carbons can capture Fe and hazardous elements, the carbons surrounding the fly ash glass and magnetic particles captures or encapsulates a broad suite of rare earth elements.


Near Simultaneous Laser Scanning Confocal And Atomic Force Microscopy (Conpokal) On Live Cells, Joree N. Sandin, Surya P. Aryal, Thomas E. Wilkop, Christopher I. Richards, Martha E. Grady Aug 2020

Near Simultaneous Laser Scanning Confocal And Atomic Force Microscopy (Conpokal) On Live Cells, Joree N. Sandin, Surya P. Aryal, Thomas E. Wilkop, Christopher I. Richards, Martha E. Grady

Physiology Faculty Publications

Techniques available for micro- and nano-scale mechanical characterization have exploded in the last few decades. From further development of the scanning and transmission electron microscope, to the invention of atomic force microscopy, and advances in fluorescent imaging, there have been substantial gains in technologies that enable the study of small materials. Conpokal is a portmanteau that combines confocal microscopy with atomic force microscopy (AFM), where a probe "pokes" the surface. Although each technique is extremely effective for the qualitative and/or quantitative image collection on their own, Conpokal provides the capability to test with blended fluorescence imaging and mechanical characterization. Designed …


University Of Kentucky Measurements Of Wind, Temperature, Pressure And Humidity In Support Of Lapse-Rate Using Multisite Fixed-Wing And Rotorcraft Unmanned Aerial Systems, Sean C. C. Bailey, Michael P. Sama, Caleb A. Canter, Luis Felipe Pampolini, Zachary S. Lippay, Travis J. Schuyler, Jonathan D. Hamilton, Sean B. Macphee, Isaac S. Rowe, Christopher D. Sanders, Virginia G. Smith, Christina N. Vezzi, Harrison M. Wight, Jesse B. Hoagg, Marcelo I. Guzman, Suzanne Weaver Smith Aug 2020

University Of Kentucky Measurements Of Wind, Temperature, Pressure And Humidity In Support Of Lapse-Rate Using Multisite Fixed-Wing And Rotorcraft Unmanned Aerial Systems, Sean C. C. Bailey, Michael P. Sama, Caleb A. Canter, Luis Felipe Pampolini, Zachary S. Lippay, Travis J. Schuyler, Jonathan D. Hamilton, Sean B. Macphee, Isaac S. Rowe, Christopher D. Sanders, Virginia G. Smith, Christina N. Vezzi, Harrison M. Wight, Jesse B. Hoagg, Marcelo I. Guzman, Suzanne Weaver Smith

Mechanical Engineering Faculty Publications

In July 2018, unmanned aerial systems (UASs) were deployed to measure the properties of the lower atmosphere within the San Luis Valley, an elevated valley in Colorado, USA, as part of the Lower Atmospheric Profiling Studies at Elevation – a Remotely-piloted Aircraft Team Experiment (LAPSE-RATE). Measurement objectives included detailing boundary layer transition, canyon cold-air drainage and convection initiation within the valley. Details of the contribution to LAPSE-RATE made by the University of Kentucky are provided here, which include measurements by seven different fixed-wing and rotorcraft UASs totaling over 178 flights with validated data. The data from these coordinated UAS flights …


A Hybrid Achromatic Metalens, Fatih Balli, Mansoor A. Sultan, Sarah K. Lami, J. Todd Hastings Aug 2020

A Hybrid Achromatic Metalens, Fatih Balli, Mansoor A. Sultan, Sarah K. Lami, J. Todd Hastings

Electrical and Computer Engineering Faculty Publications

Metalenses, ultra-thin optical elements that focus light using subwavelength structures, have been the subject of a number of recent investigations. Compared to their refractive counterparts, metalenses offer reduced size and weight, and new functionality such as polarization control. However, metalenses that correct chromatic aberration also suffer from markedly reduced focusing efficiency. Here we introduce a Hybrid Achromatic Metalens (HAML) that overcomes this trade-off and offers improved focusing efficiency over a broad wavelength range from 1000-1800 nm. HAMLs can be designed by combining recursive ray-tracing and simulated phase libraries rather than computationally intensive global search algorithms. Moreover, HAMLs can be fabricated …