Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 4 of 4

Full-Text Articles in Physical Sciences and Mathematics

Recent Shrinkage And Fragmentation Of Bluegrass Landscape In Kentucky, Bo Tao, Yanjun Yang, Jia Yang, S. Ray Smith, James F. Fox, Alex C. Ruane, Jinze Liu, Wei Ren Jun 2020

Recent Shrinkage And Fragmentation Of Bluegrass Landscape In Kentucky, Bo Tao, Yanjun Yang, Jia Yang, S. Ray Smith, James F. Fox, Alex C. Ruane, Jinze Liu, Wei Ren

Plant and Soil Sciences Faculty Publications

The Bluegrass Region is an area in north-central Kentucky with unique natural and cultural significance, which possesses some of the most fertile soils in the world. Over recent decades, land use and land cover changes have threatened the protection of the unique natural, scenic, and historic resources in this region. In this study, we applied a fragmentation model and a set of landscape metrics together with the satellite-derived USDA Cropland Data Layer to examine the shrinkage and fragmentation of grassland in the Bluegrass Region, Kentucky during 2008–2018. Our results showed that recent land use change across the Bluegrass Region is …


Effect Of Stoniness On The Hydraulic Properties Of A Soil From An Evaporation Experiment Using The Wind And Inverse Estimation Methods, Nerea Arias, Iñigo Virto, Alberto Enrique, Paloma Bescansa, Riley Walton, Ole O. Wendroth Feb 2019

Effect Of Stoniness On The Hydraulic Properties Of A Soil From An Evaporation Experiment Using The Wind And Inverse Estimation Methods, Nerea Arias, Iñigo Virto, Alberto Enrique, Paloma Bescansa, Riley Walton, Ole O. Wendroth

Plant and Soil Sciences Faculty Publications

Stony soils are distributed all over the world. The study of their characteristics has gained importance lately due to their increasing use as agricultural soils. The effect that rock fragments exert on the soil hydraulic properties is difficult to measure in situ, and is usually derived from the fine earth properties. However, the corrections used so far do not seem accurate for all types of stony soils. Our objective was to assess the adequacy of estimating the hydraulic properties of a stony soil from the fine earth ones by correcting the latter by the volume occupied by rock fragments. To …


Engineered Nanoparticles Interact With Nutrients To Intensify Eutrophication In A Wetland Ecosystem Experiment, Marie Simonin, Benjamin P. Colman, Steven M. Anderson, Ryan S. King, Matthew T. Ruis, Astrid Avellan, Christina M. Bergemann, Brittany G. Perrotta, Nicholas K. Geitner, Mengchi Ho, Belen De La Barrera, Jason M. Unrine, Gregory V. Lowry, Curtis J. Richardson, Mark R. Wiesner, Emily S. Bernhardt Sep 2018

Engineered Nanoparticles Interact With Nutrients To Intensify Eutrophication In A Wetland Ecosystem Experiment, Marie Simonin, Benjamin P. Colman, Steven M. Anderson, Ryan S. King, Matthew T. Ruis, Astrid Avellan, Christina M. Bergemann, Brittany G. Perrotta, Nicholas K. Geitner, Mengchi Ho, Belen De La Barrera, Jason M. Unrine, Gregory V. Lowry, Curtis J. Richardson, Mark R. Wiesner, Emily S. Bernhardt

Plant and Soil Sciences Faculty Publications

Despite the rapid rise in diversity and quantities of engineered nanomaterials produced, the impacts of these emerging contaminants on the structure and function of ecosystems have received little attention from ecologists. Moreover, little is known about how manufactured nanomaterials may interact with nutrient pollution in altering ecosystem productivity, despite the recognition that eutrophication is the primary water quality issue in freshwater ecosystems worldwide. In this study, we asked two main questions: (1) To what extent do manufactured nanoparticles affect the biomass and productivity of primary producers in wetland ecosystems? (2) How are these impacts mediated by nutrient pollution? To address …


Advancing The Understanding Of Environmental Transformations, Bioavailability And Effects Of Nanomaterials, An International Us Environmental Protection Agency—Uk Environmental Nanoscience Initiative Joint Program, Mitch M. Lasat, Kian Fan Chung, Jamie Lead, Steve Mcgrath, Richard J. Owen, Sophie Rocks, Jason M. Unrine, Junfeng Zhang Apr 2018

Advancing The Understanding Of Environmental Transformations, Bioavailability And Effects Of Nanomaterials, An International Us Environmental Protection Agency—Uk Environmental Nanoscience Initiative Joint Program, Mitch M. Lasat, Kian Fan Chung, Jamie Lead, Steve Mcgrath, Richard J. Owen, Sophie Rocks, Jason M. Unrine, Junfeng Zhang

Plant and Soil Sciences Faculty Publications

Nanotechnology has significant economic, health, and environmental benefits, including renewable energy and innovative environmental solutions. Manufactured nanoparticles have been incorporated into new materials and products because of their novel or enhanced properties. These very same properties also have prompted concerns about the potential environmental and human health hazard and risk posed by the manufactured nanomaterials. Appropriate risk management responses require the development of models capable of predicting the environmental and human health effects of the nanomaterials. Development of predictive models has been hampered by a lack of information concerning the environmental fate, behavior and effects of manufactured nanoparticles. The United …