Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 29 of 29

Full-Text Articles in Physical Sciences and Mathematics

Volumetric Lattice Boltzmann Method For Wall Stresses Of Image-Based Pulsatile Flows, Xiaoyu Zhang, Joan Gomez-Paz, Xi Chen, James M. Mcdonough, Md Mahfuzul Islam, Yiannis Andreopoulos, Luoding Zhu, Huidan Yu Feb 2022

Volumetric Lattice Boltzmann Method For Wall Stresses Of Image-Based Pulsatile Flows, Xiaoyu Zhang, Joan Gomez-Paz, Xi Chen, James M. Mcdonough, Md Mahfuzul Islam, Yiannis Andreopoulos, Luoding Zhu, Huidan Yu

Mechanical Engineering Faculty Publications

Image-based computational fluid dynamics (CFD) has become a new capability for determining wall stresses of pulsatile flows. However, a computational platform that directly connects image information to pulsatile wall stresses is lacking. Prevailing methods rely on manual crafting of a hodgepodge of multidisciplinary software packages, which is usually laborious and error-prone. We present a new computational platform, to compute wall stresses in image-based pulsatile flows using the volumetric lattice Boltzmann method (VLBM). The novelty includes: (1) a unique image processing to extract flow domain and local wall normality, (2) a seamless connection between image extraction and VLBM, (3) an en-route …


Numerical Investigation On The Effect Of Spectral Radiative Heat Transfer Within An Ablative Material, Raghava S. C. Davuluri, Rui Fu, Kaveh A. Tagavi, Alexandre Martin Dec 2021

Numerical Investigation On The Effect Of Spectral Radiative Heat Transfer Within An Ablative Material, Raghava S. C. Davuluri, Rui Fu, Kaveh A. Tagavi, Alexandre Martin

Mechanical Engineering Faculty Publications

The spectral radiative heat flux could impact the material response. In order to evaluate it, a coupling scheme between KATS - MR and P1 approximation model of radiation transfer equation (RTE) is constructed and used. A Band model is developed that divides the spectral domain into small bands of unequal widths. Two verification studies are conducted: one by comparing the simulation computed by the Band model with pure conduction results and the other by comparing with similar models of RTE. The comparative results from the verification studies indicate that the Band model is computationally efficient and can be used to …


Fully Coupled Internal Radiative Heat Transfer For The 3d Material Response Of Heat Shield, Raghava S. C. Davuluri, Rui Fu, Kaveh A. Tagavi, Alexandre Martin Jul 2021

Fully Coupled Internal Radiative Heat Transfer For The 3d Material Response Of Heat Shield, Raghava S. C. Davuluri, Rui Fu, Kaveh A. Tagavi, Alexandre Martin

Mechanical Engineering Faculty Publications

The radiative transfer equation (RTE) is strongly coupled to the material response code KATS. A P-1 approximation model of RTE is used to account for radiation heat transfer within the material. First, the verification of the RTE model is performed by comparing the numerical and analytical solutions. Next, the coupling scheme is validated by comparing the temperature profiles of pure conduction and conduction coupled with radiative emission. The validation study is conducted on Marschall et al. cases (radiant heating, arc-jet heating, and space shuttle entry), 3D Block, 2D IsoQ sample, and Stardust Return Capsule. The validation results agree well for …


Numerical Reconstruction Of Spalled Particle Trajectories In An Arc-Jet Environment, Raghava S. C. Davuluri, Sean C. C. Bailey, Kaveh A. Tagavi, Alexandre Martin Jan 2021

Numerical Reconstruction Of Spalled Particle Trajectories In An Arc-Jet Environment, Raghava S. C. Davuluri, Sean C. C. Bailey, Kaveh A. Tagavi, Alexandre Martin

Mechanical Engineering Faculty Publications

To evaluate the effects of spallation on ablative material, it is necessary to evaluate the mass loss. To do so, a Lagrangian particle trajectory code is used to reconstruct trajectories that match the experimental data for all kinematic parameters. The results from spallation experiments conducted at the NASA HYMETS facility over a wedge sample were used. A data-driven adaptive methodology was used to adapts the ejection parameters until the numerical trajectory matches the experimental data. The preliminary reconstruction results show that the size of the particles seemed to be correlated with the location of the ejection event. The size of …


Data Generated During The 2018 Lapse-Rate Campaign: An Introduction And Overview, Gijs De Boer, Adam Houston, Jamey D. Jacob, Phillip B. Chilson, Suzanne W. Smith, Brian Argrow, Dale Lawrence, Jack Elston, David Brus, Osku Kemppinen, Petra Klein, Julie K. Lundquist, Sean Waugh, Sean C. C. Bailey, Amy E. Frazier, Michael P. Sama, Christopher Crick, David G. Schmale Iii, James Pinto, Elizabeth A. Pillar-Little, Victoria Natalie, Anders Jensen Dec 2020

Data Generated During The 2018 Lapse-Rate Campaign: An Introduction And Overview, Gijs De Boer, Adam Houston, Jamey D. Jacob, Phillip B. Chilson, Suzanne W. Smith, Brian Argrow, Dale Lawrence, Jack Elston, David Brus, Osku Kemppinen, Petra Klein, Julie K. Lundquist, Sean Waugh, Sean C. C. Bailey, Amy E. Frazier, Michael P. Sama, Christopher Crick, David G. Schmale Iii, James Pinto, Elizabeth A. Pillar-Little, Victoria Natalie, Anders Jensen

Mechanical Engineering Faculty Publications

Unmanned aircraft systems (UASs) offer innovative capabilities for providing new perspectives on the atmosphere, and therefore atmospheric scientists are rapidly expanding their use, particularly for studying the planetary boundary layer. In support of this expansion, from 14 to 20 July 2018 the International Society for Atmospheric Research using Remotely piloted Aircraft (ISARRA) hosted a community flight week, dubbed the Lower Atmospheric Profiling Studies at Elevation – a Remotely-piloted Aircraft Team Experiment (LAPSE-RATE; de Boer et al., 2020a). This field campaign spanned a 1-week deployment to Colorado's San Luis Valley, involving over 100 students, scientists, engineers, pilots, and outreach coordinators. These …


University Of Kentucky Measurements Of Wind, Temperature, Pressure And Humidity In Support Of Lapse-Rate Using Multisite Fixed-Wing And Rotorcraft Unmanned Aerial Systems, Sean C. C. Bailey, Michael P. Sama, Caleb A. Canter, Luis Felipe Pampolini, Zachary S. Lippay, Travis J. Schuyler, Jonathan D. Hamilton, Sean B. Macphee, Isaac S. Rowe, Christopher D. Sanders, Virginia G. Smith, Christina N. Vezzi, Harrison M. Wight, Jesse B. Hoagg, Marcelo I. Guzman, Suzanne Weaver Smith Aug 2020

University Of Kentucky Measurements Of Wind, Temperature, Pressure And Humidity In Support Of Lapse-Rate Using Multisite Fixed-Wing And Rotorcraft Unmanned Aerial Systems, Sean C. C. Bailey, Michael P. Sama, Caleb A. Canter, Luis Felipe Pampolini, Zachary S. Lippay, Travis J. Schuyler, Jonathan D. Hamilton, Sean B. Macphee, Isaac S. Rowe, Christopher D. Sanders, Virginia G. Smith, Christina N. Vezzi, Harrison M. Wight, Jesse B. Hoagg, Marcelo I. Guzman, Suzanne Weaver Smith

Mechanical Engineering Faculty Publications

In July 2018, unmanned aerial systems (UASs) were deployed to measure the properties of the lower atmosphere within the San Luis Valley, an elevated valley in Colorado, USA, as part of the Lower Atmospheric Profiling Studies at Elevation – a Remotely-piloted Aircraft Team Experiment (LAPSE-RATE). Measurement objectives included detailing boundary layer transition, canyon cold-air drainage and convection initiation within the valley. Details of the contribution to LAPSE-RATE made by the University of Kentucky are provided here, which include measurements by seven different fixed-wing and rotorcraft UASs totaling over 178 flights with validated data. The data from these coordinated UAS flights …


Coordinated Unmanned Aircraft System (Uas) And Ground-Based Weather Measurements To Predict Lagrangian Coherent Structures (Lcss), Peter J. Nolan, James Pinto, Javier González-Rocha, Anders Jensen, Christina N. Vezzi, Sean C. C. Bailey, Gijs De Boer, Constantin Diehl, Roger Laurence Iii, Craig W. Powers, Hosein Foroutan, Shane D. Ross, David G. Schmale Iii Dec 2018

Coordinated Unmanned Aircraft System (Uas) And Ground-Based Weather Measurements To Predict Lagrangian Coherent Structures (Lcss), Peter J. Nolan, James Pinto, Javier González-Rocha, Anders Jensen, Christina N. Vezzi, Sean C. C. Bailey, Gijs De Boer, Constantin Diehl, Roger Laurence Iii, Craig W. Powers, Hosein Foroutan, Shane D. Ross, David G. Schmale Iii

Mechanical Engineering Faculty Publications

Concentrations of airborne chemical and biological agents from a hazardous release are not spread uniformly. Instead, there are regions of higher concentration, in part due to local atmospheric flow conditions which can attract agents. We equipped a ground station and two rotary-wing unmanned aircraft systems (UASs) with ultrasonic anemometers. Flights reported here were conducted 10 to 15 m above ground level (AGL) at the Leach Airfield in the San Luis Valley, Colorado as part of the Lower Atmospheric Process Studies at Elevation—a Remotely-Piloted Aircraft Team Experiment (LAPSE-RATE) campaign in 2018. The ultrasonic anemometers were used to collect simultaneous measurements of …


Considerations For Atmospheric Measurements With Small Unmanned Aircraft Systems, Jamey D. Jacob, Phillip B. Chilson, Adam L. Houston, Suzanne Weaver Smith Jul 2018

Considerations For Atmospheric Measurements With Small Unmanned Aircraft Systems, Jamey D. Jacob, Phillip B. Chilson, Adam L. Houston, Suzanne Weaver Smith

Mechanical Engineering Faculty Publications

This paper discusses results of the CLOUD-MAP (Collaboration Leading Operational UAS Development for Meteorology and Atmospheric Physics) project dedicated to developing, fielding, and evaluating integrated small unmanned aircraft systems (sUAS) for enhanced atmospheric physics measurements. The project team includes atmospheric scientists, meteorologists, engineers, computer scientists, geographers, and chemists necessary to evaluate the needs and develop the advanced sensing and imaging, robust autonomous navigation, enhanced data communication, and data management capabilities required to use sUAS in atmospheric physics. Annual integrated evaluation of the systems in coordinated field tests are being used to validate sensor performance while integrated into various sUAS platforms. …


Experimental Examination Of Vorticity Stripping From A Wing-Tip Vortex In Free-Stream Turbulence, Hari C. Ghimire, Sean C. C. Bailey Mar 2018

Experimental Examination Of Vorticity Stripping From A Wing-Tip Vortex In Free-Stream Turbulence, Hari C. Ghimire, Sean C. C. Bailey

Mechanical Engineering Faculty Publications

Time-resolved stereoscopic particle image velocimetry measurements were conducted of a wing-tip vortex decaying in free-stream turbulence. The objective of the research was to experimentally investigate the mechanism causing the increased rate of decay of the vortex in the presence of turbulence. It was observed that the circulation of the vortex core experienced periods of rapid loss and recovery when immersed in free-stream turbulence. These events were not observed when the vortex was in a laminar free stream. A connection was made between these events and distortion of the vortex, coinciding with stripping of core fluid from the vortex core. Specifically, …


Universality Of Local Dissipation Scales In Turbulent Boundary Layer Flows With And Without Free-Stream Turbulence, Sabah F. H. Alhamdi, Sean C. C. Bailey Nov 2017

Universality Of Local Dissipation Scales In Turbulent Boundary Layer Flows With And Without Free-Stream Turbulence, Sabah F. H. Alhamdi, Sean C. C. Bailey

Mechanical Engineering Faculty Publications

Measurements of the small-scale dissipation statistics of turbulent boundary layer flows with and without free-stream turbulence are reported for Reτ ≈ 1000 (Reθ ≈ 2000). The scaling of the dissipation scale distribution is examined in these two boundary conditions. Results demonstrated that the local large-scale Reynolds number based on the measured longitudinal integral length scale fails to properly normalize the dissipation scale distribution near the wall in these two free-stream conditions due to the imperfect characterization of the upper bound of the inertial cascade by the integral length scale. A surrogate found from turbulent kinetic energy and …


An Experimental Investigation Of Wing-Tip Vortex Decay In Turbulence, Hai G. Ghimire, Sean C. C. Bailey Mar 2017

An Experimental Investigation Of Wing-Tip Vortex Decay In Turbulence, Hai G. Ghimire, Sean C. C. Bailey

Mechanical Engineering Faculty Publications

Particle image velocimetry measurements were conducted for a wing-tip vortex decaying in free-stream turbulence. The vortex exhibited stochastic collapse with free-stream turbulence present, with the breakdown initiating earlier for higher levels of turbulence. An increased rate of decay of the vortex tangential velocity was also observed, increasing with increasing free-stream turbulence. The decay of the vortex tangential velocity without the free-stream turbulence was well represented by viscous diffusion, resulting in an increase in the core radius and decrease in the peak tangential velocity. With the addition of free-stream turbulence, the rate of decay of the peak tangential velocity of the …


Laser Shock Wave Assisted Patterning On Niti Shape Memory Alloy Surfaces, Dovletgeldi Seyitliyev, Peizhen Li, Khomidkhodza Kholikov, Byron Grant, Haluk E. Karaca, Ali O. Er Feb 2017

Laser Shock Wave Assisted Patterning On Niti Shape Memory Alloy Surfaces, Dovletgeldi Seyitliyev, Peizhen Li, Khomidkhodza Kholikov, Byron Grant, Haluk E. Karaca, Ali O. Er

Mechanical Engineering Faculty Publications

An advanced direct imprinting method with low cost, quick, and less environmental impact to create thermally controllable surface pattern using the laser pulses is reported. Patterned micro indents were generated on Ni50Ti50 shape memory alloys (SMA) using an Nd:YAG laser operating at 1064 nm combined with suitable transparent overlay, a sacrificial layer of graphite, and copper grid. Laser pulses at different energy densities which generates pressure pulses up to 10 GPa on the surface was focused through the confinement medium, ablating the copper grid to create plasma and transferring the grid pattern onto the NiTi surface. Scanning …


Recoverable Stress Induced Two-Way Shape Memory Effect On Niti Surface Using Laser-Produced Shock Wave, Dovletgeldi Seyitliyev, Peizhen Li, Khomidkhodza Kholikov, Byron Grant, Zachary Thomas, Orhan Alal, Haluk E. Karaca, Ali O. Er Feb 2017

Recoverable Stress Induced Two-Way Shape Memory Effect On Niti Surface Using Laser-Produced Shock Wave, Dovletgeldi Seyitliyev, Peizhen Li, Khomidkhodza Kholikov, Byron Grant, Zachary Thomas, Orhan Alal, Haluk E. Karaca, Ali O. Er

Mechanical Engineering Faculty Publications

The surfaces of Ni50Ti50 shape memory alloys (SMAs) were patterned by laser scribing. This method is more simplistic and efficient than traditional indentation techniques, and has also shown to be an effective method in patterning these materials. Different laser energy densities ranging from 5 mJ/pulse to 56 mJ/pulse were used to observe recovery on SMA surface. The temperature dependent heat profiles of the NiTi surfaces after laser scribing at 56 mJ/pulse show the partially-recovered indents, which indicate a "shape memory effect (SME)" Experimental data is in good agreement with theoretical simulation of laser induced shock wave propagation inside NiTi SMAs. …


Spatio-Temporal Linear Stability Analysis Of Stratified Planar Wakes: Velocity And Density Asymmetry Effects, Benjamin Emerson, Swapnil Jagtap, J. Mathew Quinlan, Michael W. Renfro, Baki M. Cetegen, Tim Lieuwen Apr 2016

Spatio-Temporal Linear Stability Analysis Of Stratified Planar Wakes: Velocity And Density Asymmetry Effects, Benjamin Emerson, Swapnil Jagtap, J. Mathew Quinlan, Michael W. Renfro, Baki M. Cetegen, Tim Lieuwen

Mechanical Engineering Faculty Publications

This paper explores the hydrodynamic stability of bluff body wakes with non-uniform mean density, asymmetric mean density, and velocity profiles. This work is motivated by experiments [S. Tuttle et al., “Lean blow off behavior of asymmetrically-fueled bluff body-stabilized flames,” Combust. Flame 160, 1677 (2013)], which investigated reacting wakes with equivalence ratio stratification and, hence, asymmetry in the base flow density profiles. They showed that highly stratified cases exhibited strong, narrowband oscillations, suggestive of global hydrodynamic instability. In this paper, we present a local hydrodynamic stability analysis for non-uniform density wakes that includes base flow asymmetry. The results show …


The Effects Of Thermal Procedure On Transformation Temperature, Crystal Structure And Microstructure Of Cu-Al-Co Shape Memory Alloy, Y. Aydoğdu, M. Kök, F. Dağdelen, A. Aydoğdu, Ali S. Turabi, Haluk E. Karaca Jan 2016

The Effects Of Thermal Procedure On Transformation Temperature, Crystal Structure And Microstructure Of Cu-Al-Co Shape Memory Alloy, Y. Aydoğdu, M. Kök, F. Dağdelen, A. Aydoğdu, Ali S. Turabi, Haluk E. Karaca

Mechanical Engineering Faculty Publications

The purpose of this study is to investigate the effects of different thermal procedures of the Cu-Al-Co shape memory alloy on its crystal structure, transformation temperature and microstructure. The alloys were subjected to a heat treatment and then cooling was applied at four different conditions. After the thermal process, XRD, DSC, optical microscopy and micro-hardness measurements were carried out. The experimental studies showed that crystal structure, microstructure and transformation temperature of Cu-Al-Co alloy were changed from the cooling conditions.


Effect Of Spalled Particles Thermal Degradation On A Hypersonic Flow Field Environment, Raghava S. C. Davuluri, Huaibao Zhang, Alexandre Martin Jan 2016

Effect Of Spalled Particles Thermal Degradation On A Hypersonic Flow Field Environment, Raghava S. C. Davuluri, Huaibao Zhang, Alexandre Martin

Mechanical Engineering Faculty Publications

Two-way coupling is performed between a spallation code and a hypersonic aerothermodynamics CFD solver to evaluate the effect of spalled particles on the flow field. Time accurate solutions are computed in argon and air flow fields. A single particle simulations and multiple particles simulations are performed and studied. The results show that the carbon vapor released by spalled particles tend to change the composition of the flow field, particularly the upstream region of the shock.


Numerical Investigation On Charring Ablator Geometric Effects: Study Of Stardust Sample Return Capsule Heat Shield, Haoyue Weng, Alexandre Martin Jan 2015

Numerical Investigation On Charring Ablator Geometric Effects: Study Of Stardust Sample Return Capsule Heat Shield, Haoyue Weng, Alexandre Martin

Mechanical Engineering Faculty Publications

Sample geometry is very influential in small charring ablative articles where 1D assumption might not be accurate. In heat shield design, 1D is often assumed since the nose radius is much larger than the thickness of charring. Whether the 1D assumption is valid for the heat shield is unknown. Therefore, the geometric effects of Stardust sample return capsule heat shield are numerically studied using a material response program. The developed computer program models material charring, conductive heat transfer, surface energy balance, pyrolysis gas transport and orthotropic material properties in 3D Cartesian coordinates. Simulation results show that the centerline temperatures predicted …


Numerical Investigation Of Pyrolysis Gas Blowing Pattern And Thermal Response Using Orthotropic Charring Ablative Material, Haoyue Weng, Alexandre Martin Jun 2014

Numerical Investigation Of Pyrolysis Gas Blowing Pattern And Thermal Response Using Orthotropic Charring Ablative Material, Haoyue Weng, Alexandre Martin

Mechanical Engineering Faculty Publications

An orthotropic material model is implemented in a three-dimensional material response code, and numerically studied for charring ablative material. Model comparison is performed using an iso-Q sample geometry. The comparison is presented using pyrolysis gas streamlines and time series of temperature at selected virtual thermocouples. Results show that orthotropic permeability affects both pyrolysis gas flow and thermal response, but orthotropic thermal conductivity essentially changes the thermal performance of the material. The effect of orthotropic properties may have practical use such that the material performance can be manipulated by altering the angle of orthotropic orientation.


Numerical Study Of Spallation Phenomenon In An Arc-Jet Environment, Raghava Davuluri, Alexandre Martin Jun 2014

Numerical Study Of Spallation Phenomenon In An Arc-Jet Environment, Raghava Davuluri, Alexandre Martin

Mechanical Engineering Faculty Publications

The spallation phenomenon might affect the aerodynamic heating rates of re-entry vehicles. To investigate spallation effects, a code is developed to compute the dynamics of spalled particles. The code uses a finite-rate chemistry model to study the chemical interactions of the particles with the flow field. The spallation code is one-way coupled to a CFD solver that models the hypersonic flow field around an ablative sample. Spalled particles behavior is numerically studied for argon and air flow field. The chemistry model is compared with that of Park's model which complies with oxidation and sublimation and shows disagreement for nitridation.


Coupled Flow Field Simulations Of Charring Ablators With Nonequilibrium Surface Chemistry, Hicham Alkandry, Iain D. Boyd, Alexandre Martin Jun 2013

Coupled Flow Field Simulations Of Charring Ablators With Nonequilibrium Surface Chemistry, Hicham Alkandry, Iain D. Boyd, Alexandre Martin

Mechanical Engineering Faculty Publications

This paper describes the coupling of a Navier-Stokes solver to a material response code to simulate nonequilibrium gas-surface interactions. The Navier-Stokes solver used in this study is LeMANS, which is a three-dimensional computational fluid dynamics code that can simulate hypersonic reacting flows including thermo-chemical nonequilibrium effects. The material response code employed in this study is MOPAR, which uses the one-dimensional control volume nite-element method to model heat conduction and pyrolysis gas behavior. This coupling is demonstrated using a test case based on the Stardust sample return capsule. Coupled simulations are performed at three different trajectory conditions. The effects of the …


Volume Averaged Modeling Of The Oxidation Of Porous Carbon Fiber Material, Alexandre Martin Jun 2013

Volume Averaged Modeling Of The Oxidation Of Porous Carbon Fiber Material, Alexandre Martin

Mechanical Engineering Faculty Publications

Charring ablators remain the premium choice for space exploration missions that involve atmospheric re-entry. This type of ablative material is composed of a carbon matrix, usually made of fibers, which is then impregnated with a resin. During re-entry, the high heat flux produced by convective heating causes the material to chemically react. First, the resin pyrolyzes, and is vaporized into a gas that travels through the material, and is eventually ejected at the surface. Then, as the temperature rises, the surface of the porous matrix recess through ablative processes. For re-entry conditions typical of space exploration missions, this is mainly …


Flow-Tube Oxidation Experiments On The Carbon Preform Of Pica, Francesco Panerai, Alexandre Martin, Nagi N. Mansour, Steven A. Sepka, Jean Lachaud Jun 2013

Flow-Tube Oxidation Experiments On The Carbon Preform Of Pica, Francesco Panerai, Alexandre Martin, Nagi N. Mansour, Steven A. Sepka, Jean Lachaud

Mechanical Engineering Faculty Publications

Oxidation experiments on the carbon preform of a phenolic-impregnated carbon ablator were performed in the NASA Ames ow-tube reactor facility, at temperatures between 700 and 1300 K, under dry air gas at pressures between 103 and 104 Pa. Mass loss, volumetric recession and density changes were measured at different test conditions. An analysis of the diffusion/reaction competition within the porous material, based on the Thiele number, allowed us to identify low temperature and low pressure conditions to be dominated by in-depth volume oxidation. Experiments above 1000 K were found at transition conditions, where diffusion and reaction occur at similar scales. …


Multi-Dimensional Modeling Pyrolysis Gas Flow Inside Charring Ablators, Haoyue Weng, Alexandre Martin Jun 2013

Multi-Dimensional Modeling Pyrolysis Gas Flow Inside Charring Ablators, Haoyue Weng, Alexandre Martin

Mechanical Engineering Faculty Publications

Using an ablative thermal/material response code, the importance of three-dimensionality for modeling ablative test-article is addressed. In particular, the simulation of the pyrolysis gas flow inside a porous material is presented, using two different geometries. The effects of allowing the gas to flow out of the side wall are especially highlighted. Results show that the flow inside the test-article is complex, and that the 0D or 1D assumption made in most Material Response (MR) codes might not be valid for certain geometries.


Comparison Of Models For Mixture Transport Properties For Numerical Simulations Of Ablative Heat-Shields, Hicham Alkandry, Iain D. Boyd, Alexandre Martin Jan 2013

Comparison Of Models For Mixture Transport Properties For Numerical Simulations Of Ablative Heat-Shields, Hicham Alkandry, Iain D. Boyd, Alexandre Martin

Mechanical Engineering Faculty Publications

The goal of this study is to evaluate the effects of different models for calculating the mixture transport properties on flowfield predictions of ablative heat-shields. The Stardust sample return capsule at four different trajectory conditions is used as a test case for this study. In the first part of the study, the results predicted using Wilke's mixing rule with species viscosities calculated using Blottner's curve fits and species thermal conductivities determined using Eucken's relation are compared to the results obtained using Gupta's mixing rule with collision cross-section (CCS) data. The Wilke/Blottner/Eucken model overpredicts the heat transfer to the surface relative …


Modeling Of Chemical Nonequilibrium Effects In A Charring Ablator, Alexandre Martin Jan 2013

Modeling Of Chemical Nonequilibrium Effects In A Charring Ablator, Alexandre Martin

Mechanical Engineering Faculty Publications

Charring ablators remain the premium choice for space exploration missions that involve atmospheric re-entry. These type of ablative material are composed of a carbon matrix, usually made of fibers, which is then impregnated with a resin. During re-entry, the high heat flux produced by convective heating causes the material to chemically react. First, the resin pyrolyzes, and is vaporized into a gas that travels through the material, and is eventually ejected at the surface. Since the composition of the gas at the surface greatly affects the heat flux, and therefore the surface temperature, it is thus important to be able …


Multi-Dimensional Modeling Of Charring Ablators, Haoyue Weng, Huaibao Zhang, Ovais U. Khan, Alexandre Martin Jun 2012

Multi-Dimensional Modeling Of Charring Ablators, Haoyue Weng, Huaibao Zhang, Ovais U. Khan, Alexandre Martin

Mechanical Engineering Faculty Publications

Re-entry of a spacecraft occurs at the hypersonic regime where the flow field is extremely complex: high temperature gradients occurring in the shock-layer region ionize and dissociate the air. Even if a large portion of heat generated during this process is convected away in the surrounding air, a fraction of it is still transferred to the vehicle. Therefore, it is important to protect the vehicle with a suitable kind of shielding. Of the many techniques available today, use of ablative material is gaining popularity. The basic idea behind an ablating heat shield is that the energy incident on the spacecraft …


Modeling Of Heat Transfer Attenuation By Ablative Gases During The Stardust Re-Entry, Alexandre Martin, Iain D. Boyd Jan 2012

Modeling Of Heat Transfer Attenuation By Ablative Gases During The Stardust Re-Entry, Alexandre Martin, Iain D. Boyd

Mechanical Engineering Faculty Publications

The great majority of modern space vehicles designed for planetary exploration use ablative materials to protect the payload against the high heating environment experienced during re-entry. In order to properly model and predict the aerothermal environment of the vehicle, it is imperative to account for the gases produced by ablation processes. In the case of charring ablators, where an inner resin is pyrolyzed at a relatively low temperature, the composition of the gas expelled into the boundary layer is complex and may lead to thermal chemical reactions that cannot be captured with simple flow chemistry models. In order to obtain …


Effect Of Applied Magnetic Field On Shock Boundary Layer Interaction, Ovais U. Khan, Alexandre Martin Jan 2012

Effect Of Applied Magnetic Field On Shock Boundary Layer Interaction, Ovais U. Khan, Alexandre Martin

Mechanical Engineering Faculty Publications

The governing magneto-hydrodynamic (MHD) equations contain classical fluid dynamics equations along with coupled Maxwell’s magnetic induction equations. These equations model both advection and diffusion effects of electromagnetic field. However, available literature indicates that some previous investigations neglect the diffusion of magnetic field and considered only ideal MHD equations for modeling a typical MHD problem. In this work, the effects of magnetic field diffusion term also known as viscous magnetic term have been investigated over flow structure. Low magnetic Reynolds number approximation and ideal full MHD set of equations have been considered and solved using a four-stage modified Runge-Kutta scheme augmented …


Numerical Modeling Of The Cn Spectral Emission Of The Stardust Re-Entry Vehicle, Alexandre Martin, Erin D. Farbar, Iain D. Boyd Jun 2011

Numerical Modeling Of The Cn Spectral Emission Of The Stardust Re-Entry Vehicle, Alexandre Martin, Erin D. Farbar, Iain D. Boyd

Mechanical Engineering Faculty Publications

Re-entry vehicles designed for space exploration are usually equipped with thermal protection systems made of ablative material. In order to properly model and predict the aerothermal environment of the vehicle, it is imperative to account for the gases produced by ablation processes. In the case of charring ablators, where an inner resin is pyrolyzed at a relatively low temperature, the composition of the gas expelled into the boundary layer is complex and may lead to thermal chemical reactions that cannot be captured with simple ow chemistry models. In order to obtain better predictions, an appropriate gas ow chemistry model needs …