Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Engineering

University of Kentucky

Civil Engineering Faculty Publications

Vapor intrusion

Publication Year

Articles 1 - 3 of 3

Full-Text Articles in Physical Sciences and Mathematics

Occurrence Of Chlorinated Volatile Organic Compounds (Vocs) In A Sanitary Sewer System: Implications For Assessing Vapor Intrusion Alternative Pathways, Mohammadyousef Roghani, Olivia P. Jacobs, Anthony Miller, Evan James Willett, James A. Jacobs, C. Ricardo Viteri, Elham Shirazi, Kelly G. Pennell Mar 2018

Occurrence Of Chlorinated Volatile Organic Compounds (Vocs) In A Sanitary Sewer System: Implications For Assessing Vapor Intrusion Alternative Pathways, Mohammadyousef Roghani, Olivia P. Jacobs, Anthony Miller, Evan James Willett, James A. Jacobs, C. Ricardo Viteri, Elham Shirazi, Kelly G. Pennell

Civil Engineering Faculty Publications

Sewer systems have been recently recognized as potentially important exposure pathways to consider during vapor intrusion assessments; however, this pathway has not been well-characterized and there is need for additional information about the occurrence of volatile organic compounds (VOCs) in sewer systems. This paper reports the results of sewer gas sampling conducted in a sanitary sewer over the years of 2014–2017. Sewer gas samples were collected and analyzed using several different techniques, including TO-15 (grab), TO-17 (passive), Radiello® (passive) and a novel continuous monitoring technique, the Autonomous Rugged Optical Multigas Analyzer (AROMA). The applicability of each of the different approaches …


Three-Dimensional Vapor Intrusion Modeling Approach That Combines Wind And Stack Effects On Indoor, Atmospheric, And Subsurface Domains, Elham Shirazi, Kelly G. Pennell Dec 2017

Three-Dimensional Vapor Intrusion Modeling Approach That Combines Wind And Stack Effects On Indoor, Atmospheric, And Subsurface Domains, Elham Shirazi, Kelly G. Pennell

Civil Engineering Faculty Publications

Vapor intrusion (IV) exposure risks are difficult to characterize due to the role of atmospheric, building and subsurface processes. This study presents a three-dimensional VI model that extends the common subsurface fate and transport equations to incorporate wind and stack effects on indoor air pressure, building air exchange rate (AER) and indoor contaminant concentration to improve VI exposure risk estimates. The model incorporates three modeling programs: (1) COMSOL Multiphysics to model subsurface fate and transport processes, (2) CFD0 to model atmospheric air flow around the building, and (3) CONTAM to model indoor air quality. The combined VI model predicts AER …


Air Exchange Rates And Alternatuve Vapor Entry Pathways To Inform Vapor Intrusion Exposure Risk Assessments, Rivka Reichman, Mohammadyousef Roghani, Evan J. Willett, Elham Shirazi, Kelly G. Pennell Mar 2017

Air Exchange Rates And Alternatuve Vapor Entry Pathways To Inform Vapor Intrusion Exposure Risk Assessments, Rivka Reichman, Mohammadyousef Roghani, Evan J. Willett, Elham Shirazi, Kelly G. Pennell

Civil Engineering Faculty Publications

Vapor intrusion (VI) is a term used to describe indoor air (IA) contamination that occurs due to the migration of chemical vapors in the soil and groundwater. The overall vapor transport process depends on several factors such as contaminant source characteristics, subsurface conditions, building characteristics, and general site conditions. However, the classic VI conceptual model does not adequately account for the physics of airflow around and inside a building and does not account for chemical emissions from alternative “preferential” pathways (e.g. sewers and other utility connections) into IA spaces. This mini-review provides information about recent research related to building air …