Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Engineering

University of Kentucky

Center for Advanced Materials Faculty Publications

Sr2IrO4

Publication Year

Articles 1 - 3 of 3

Full-Text Articles in Physical Sciences and Mathematics

Anisotropic Softening Of Magnetic Excitations In Lightly Electron-Doped Sr2Iro4, X. Liu, M. P. M. Dean, Z. Y. Meng, M. H. Upton, T. Qi, T. Gog, Y. Cao, J. Q. Lin, D. Meyers, H. Ding, Gang Cao, J. P. Hill Jun 2016

Anisotropic Softening Of Magnetic Excitations In Lightly Electron-Doped Sr2Iro4, X. Liu, M. P. M. Dean, Z. Y. Meng, M. H. Upton, T. Qi, T. Gog, Y. Cao, J. Q. Lin, D. Meyers, H. Ding, Gang Cao, J. P. Hill

Center for Advanced Materials Faculty Publications

The magnetic excitations in electron-doped (Sr1−xLax)2IrO4 with x = 0.03 were measured using resonant inelastic x-ray scattering at the Ir L3 edge. Although much broadened, well defined dispersive magnetic excitations were observed. Comparing with the magnetic dispersion from the undoped compound, the evolution of the magnetic excitations upon doping is highly anisotropic. Along the antinodal direction, the dispersion is almost intact. On the other hand, the magnetic excitations along the nodal direction show significant softening. These results establish the presence of strong magnetic correlations in electron-doped (Sr1−xLax …


X-Ray Absorption Spectroscopy Study Of The Effect Of Rh Doping In Sr2Iro4, C. H. Sohn, Deok-Yong Cho, C. -T. Kuo, L. J. Sandilands, Tongfei Qi, Gang Cao, T. W. Noh Mar 2016

X-Ray Absorption Spectroscopy Study Of The Effect Of Rh Doping In Sr2Iro4, C. H. Sohn, Deok-Yong Cho, C. -T. Kuo, L. J. Sandilands, Tongfei Qi, Gang Cao, T. W. Noh

Center for Advanced Materials Faculty Publications

We investigate the effect of Rh doping in Sr2IrO4 using X-ray absorption spectroscopy (XAS). We observed appearance of new electron-addition states with increasing Rh concentration (x in Sr2Ir1−xRhxO4) in accordance with the concept of hole doping. The intensity of the hole-induced state is however weak, suggesting weakness of charge transfer (CT) effect and Mott insulating ground states. Also, Ir Jeff = 1/2 upper Hubbard band shifts to lower energy as x increases up to x = 0.23. Combined with optical spectroscopy, these results suggest a hybridisation-related mechanism, in …


Magnetic And Crystal Structures Of Sr2Iro4: A Neutron Diffraction Study, Feng Ye, Songxue Chi, Bryan C. Chakoumakos, Jaime A. Fernandez-Baca, Tongfei Qi, Gang Cao Apr 2013

Magnetic And Crystal Structures Of Sr2Iro4: A Neutron Diffraction Study, Feng Ye, Songxue Chi, Bryan C. Chakoumakos, Jaime A. Fernandez-Baca, Tongfei Qi, Gang Cao

Center for Advanced Materials Faculty Publications

We report a single-crystal neutron diffraction study of the layered Sr2IrO4. This work unambiguously determines the magnetic structure of the system and reveals that the spin orientation rigidly tracks the staggered rotation of the IrO6 octahedra in Sr2IrO4. The long-range antiferromagnetic order has a canted spin configuration with an ordered moment of 0.208(3) μB/Ir site within the basal plane; a detailed examination of the spin canting yields 0.202(3) and 0.049(2) μB/site for the a axis and the b axis, respectively. It is intriguing that forbidden nuclear reflections …