Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 9 of 9

Full-Text Articles in Physical Sciences and Mathematics

Geospatial Energy Potential And Life Cycle Assessment Of Nearshore Oscillating Water Column Systems, Aleks Siemenn, Marie-Odile Fortier May 2019

Geospatial Energy Potential And Life Cycle Assessment Of Nearshore Oscillating Water Column Systems, Aleks Siemenn, Marie-Odile Fortier

CURCE Annual Undergraduate Conference

Oscillating Water Column (OWC) systems are an iteration of terminator ocean energy technology which generate electrical energy from turbine torque induced by the compression of air in a chamber from changing water level height. OWCs are a well-established technology, however, there have been no studies to date which quantify the life cycle environmental impacts of these systems in a geographic context. The goal of this study is to optimally size an OWC system for selected New England coastline sites and then assess the environmental impacts of the varying system sizes.

An OWC system is optimally sized when the volume of …


Synthesis And Adsorption Experiments With Metal-Organic Frameworks For High School And Undergraduate Laboratory Settings, Kate Holley Jan 2019

Synthesis And Adsorption Experiments With Metal-Organic Frameworks For High School And Undergraduate Laboratory Settings, Kate Holley

Legacy Theses & Dissertations (2009 - 2024)

Seven experiments are described and outlined here that introduce high school and undergraduate students to metal–organic frameworks (MOFs) and their applications. The experiments were designed to be completed with basic laboratory equipment and supplies and without the use of expensive characterization instruments, simulating typical high school chemistry laboratory conditions. Students synthesized two well-known MOFs, HKUST-1 and aluminum fumarate, using simple, safe, and rapid methods (fast enough to be performed within the time constrains of a typical high school class). Students then use their synthesized MOFs to explore their inherent sorption properties. In one set of experiments, the synthesized MOFs are …


Investigation Of Optical Second Harmonic Generation From Si (100) With Process Tailored Surface & Embedded Ag Nanostructures For Advanced Si Nonlinear Nanophotonics, Gourav Bhowmik Jan 2019

Investigation Of Optical Second Harmonic Generation From Si (100) With Process Tailored Surface & Embedded Ag Nanostructures For Advanced Si Nonlinear Nanophotonics, Gourav Bhowmik

Legacy Theses & Dissertations (2009 - 2024)

The challenge of current microelectronic architecture in transmission bandwidth and power consumption can be potentially solved by using silicon photonics technologies that are compatible with modern CMOS fabrication. One of the critical active photonic devices for Si photonics is a Si based optical modulator. Most of the reported silicon modulators rely on the free carrier plasma dispersion effect. In those cases, a weak change of the refractive index obtained by carrier accumulation, injection or depletion is utilized in a Mach-Zehnder interferometer or a microring resonator to achieve intensity modulation, rendering them difficult for chip-level implementation due to a large footprint …


Exploring Gated Nanoelectronic Devices Fabricated From 1d And 2d Materials, Prathamesh A. Dhakras Jan 2019

Exploring Gated Nanoelectronic Devices Fabricated From 1d And 2d Materials, Prathamesh A. Dhakras

Legacy Theses & Dissertations (2009 - 2024)

One and two dimensional materials are being extensively researched toward potential application as ultra-thin body channel materials. The difficulty of implementing physical doping methods in these materials has necessitated various alternative doping schemes, the most promising of which is the electrostatic gating technique due to its reconfigurability. This dissertation explores the different fundamental devices that can be fabricated and characterized by taking advantage of the electrostatic gating of individual single-walled carbon nanotubes (SWNTs), dense SWNT networks and exfoliated 2D tungsten diselenide (WSe2) flakes.


Electron Transport In One And Two Dimensional Materials, Samuel William Lagasse Jan 2019

Electron Transport In One And Two Dimensional Materials, Samuel William Lagasse

Legacy Theses & Dissertations (2009 - 2024)

This dissertation presents theoretical and experimental studies in carbon nanotubes (CNTs), graphene, and van der Waals heterostructures. The first half of the dissertation focuses on cutting edge tight-binding-based quantum transport models which are used to study proton irradiation-induced single-event effects in carbon nanotubes [1], total ionizing dose effects in graphene [2], quantum hall effect in graded graphene p-n junctions [3], and ballistic electron focusing in graphene p-n junctions [4]. In each study, tight-binding models are developed, with heavy emphasis on tying to experimental data. Once benchmarked against experiment, properties of each system which are difficult to access in the laboratory, …


Efficient Detection Of Diseases By Feature Engineering Approach From Chest Radiograph, Avishek Mukherjee Jan 2019

Efficient Detection Of Diseases By Feature Engineering Approach From Chest Radiograph, Avishek Mukherjee

Legacy Theses & Dissertations (2009 - 2024)

Deep Learning is the new state-of-the-art technology in Image Processing. We applied Deep Learning techniques for identification of diseases from Radiographs made publicly available by NIH. We applied some Feature Engineering approach to augment the data from Anterior-Posterior position to Posterior-Anterior position and vice-versa for all the diseases, at the same point we suppressed ‘No Finding’ radiographs which contributed to more than 50% (approximately 60,000) of the dataset to top 1000 images. We also prepared a model by adding a huge amount of noise to the augmented data, which if need be can be deployed at rural locations which lack …


Synthesis Of Cadmium Arsenide Semiconductor Nanoparticles, Superatomic Silver Clusters, And Silver Coordination Polymers, Sarthak Jashubhai Patel Jan 2019

Synthesis Of Cadmium Arsenide Semiconductor Nanoparticles, Superatomic Silver Clusters, And Silver Coordination Polymers, Sarthak Jashubhai Patel

Legacy Theses & Dissertations (2009 - 2024)

Nanomaterials have chemical, electronic, optical, and other properties distinct from their bulk counterparts. However, the atom-precise synthesis of these materials remains a challenge, leaving open many scientific questions regarding the size regime between nanoparticulate (quantum confined) and bulk character. In this work, efforts toward the synthesis of nanoparticulate and atom-precise metal and semimetal materials are described. The synthesis of II-V semiconductor Cd3As2 having a near-zero bandgap is discussed. Analysis by UV-Vis absorption spectroscopy and powder X-ray diffraction indicate the formation of material with unexpected crystallinity and absorption properties The interaction between the molecular source of As and the solvent was …


Emotion Forecasting In Dyadic Conversation : Characterizing And Predicting Future Emotion With Audio-Visual Information Using Deep Learning, Sadat Shahriar Jan 2019

Emotion Forecasting In Dyadic Conversation : Characterizing And Predicting Future Emotion With Audio-Visual Information Using Deep Learning, Sadat Shahriar

Legacy Theses & Dissertations (2009 - 2024)

Emotion forecasting is the task of predicting the future emotion of a speaker, i.e., the emotion label of the future speaking turn–based on the speaker’s past and current audio-visual cues. Emotion forecasting systems require new problem formulations that differ from traditional emotion recognition systems. In this thesis, we first explore two types of forecasting windows(i.e., analysis windows for which the speaker’s emotion is being forecasted): utterance forecasting and time forecasting. Utterance forecasting is based on speaking turns and forecasts what the speaker’s emotion will be after one, two, or three speaking turns. Time forecasting forecasts what the speaker’s emotion will …


Autonomous Spectrum Enforcement : A Blockchain Approach, Maqsood Ahamed Abdul Careem Jan 2019

Autonomous Spectrum Enforcement : A Blockchain Approach, Maqsood Ahamed Abdul Careem

Legacy Theses & Dissertations (2009 - 2024)

A core limitation in existing wireless technologies is the scarcity of spectrum, to support the exponential increase in Internet-connected and multimedia-capable mobile devices and the increasing demand for bandwidth-intensive services. As a solution, Dynamic Spectrum Access policies are being ratified to promote spectrum sharing for various spectrum bands and to improve the spectrum utilization. This poses an equally challenging problem of enforcing these spectrum policies. The distributed and dynamic nature of policy violations necessitates the use of autonomous agents to implement efficient and agile enforcement systems. The design of such a fully autonomous enforcement system is complicated due to the …