Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Engineering

Selected Works

Shi Xue Dou

2014

Transitions

Articles 1 - 4 of 4

Full-Text Articles in Physical Sciences and Mathematics

Pressure Induced Magneto-Structural Phase Transitions In Layered Rmn2x2 Compounds (Invited), Shane Kennedy, Jianli Wang, Stewart Campbell, Michael Hofmann, S X. Dou Oct 2014

Pressure Induced Magneto-Structural Phase Transitions In Layered Rmn2x2 Compounds (Invited), Shane Kennedy, Jianli Wang, Stewart Campbell, Michael Hofmann, S X. Dou

Shi Xue Dou

We have studied a range of pseudo-ternaries derived from the parent compound PrMn2 Ge 2, substituting for each constituent element with a smaller one to contract the lattice. This enables us to observe the magneto-elastic transitions that occur as the Mn-Mn nearest neighbour distance is reduced and to assess the role of Pr on the magnetism. Here, we report on the PrMn2 Ge 2−xSix, Pr1−xYxMn2 Ge 2, and PrMn2−xFex Ge 2 systems. The pressure produced by chemical substitution in these pseudo-ternaries is inherently non-uniform, with local pressure variations dependent on the local atomic distribution. We find that concentrated chemical substitution …


Magnetic Transitions In Lafe13-X-Ycoysix Compounds, Jianli Wang, S J. Campbell, S J. Kennedy, P Shamba, R Zeng, S X. Dou, G H. Wu Oct 2014

Magnetic Transitions In Lafe13-X-Ycoysix Compounds, Jianli Wang, S J. Campbell, S J. Kennedy, P Shamba, R Zeng, S X. Dou, G H. Wu

Shi Xue Dou

The magnetic properties of a set of LaFe13−x−yCoySix compounds (x = 1.6 − 2.6; y = 0, y = 1.0) have been investigated using magnetic measurements, thermal expansion, 57Fe Mössbauer spectroscopy and high resolution neutron powder diffraction methods over the temperature range 10–300 K. The natures of the magnetic transitions in these LaFe13−x−yCoySix compounds have been determined. The Curie temperatures of LaFe13−xSix were found to increase with Si content from TC = 219(5) K for Si content x = 1.6 to TC = 250(5) K for x = 2.6. Substitution of Co for Fe in LaFe10.4Si2.6 resulted in a further …


Driving Magnetostructural Transitions In Layered Intermetallic Compounds, Jianli Wang, L Caron, S J. Campbell, S J. Kennedy, M Hofmann, Z X Cheng, M Md Din, A J. Studer, E Bruck, S X. Dou Mar 2014

Driving Magnetostructural Transitions In Layered Intermetallic Compounds, Jianli Wang, L Caron, S J. Campbell, S J. Kennedy, M Hofmann, Z X Cheng, M Md Din, A J. Studer, E Bruck, S X. Dou

Shi Xue Dou

We report the dramatic effect of applied pressure and magnetic field on the layered intermetallic compound Pr0.5Y0.5Mn 2Ge2. In the absence of pressure or magnetic field this compound displays interplanar ferromagnetism at room temperature and undergoes an isostructural first order magnetic transition (FOMT) to an antiferromagnetic state below 158 K, followed by another FOMT at 50 K due to the reemergence of ferromagnetism as praseodymium orders (TCPr). The application of a magnetic field drives these two transitions towards each other, whereas the application of pressure drives them apart. Pressure also produces a giant magnetocaloric effect such that a threefold increase …


Magnetic Phase Transitions And Entropy Change In Layered Ndmn1.7cr0.3si2, M F. Md Din, Jianli Wang, S J. Campbell, A J. Studer, M Avdeev, S J. Kennedy, Q F. Gu, R Zeng, S X. Dou Mar 2014

Magnetic Phase Transitions And Entropy Change In Layered Ndmn1.7cr0.3si2, M F. Md Din, Jianli Wang, S J. Campbell, A J. Studer, M Avdeev, S J. Kennedy, Q F. Gu, R Zeng, S X. Dou

Shi Xue Dou

A giant magnetocaloric effect has been observed around the Curie temperature, TC ∼ 42 K, in NdMn1.7Cr0.3Si2 with no discernible thermal and magnetic hysteresis losses. Below 400 K, three magnetic phase transitions take place around 380 K, 320 K and 42 K. Detailed high resolution synchrotron and neutron powder diffraction (10-400 K) confirmed the magnetic transitions and phases as follows: TN intra ∼ 380 K denotes the transition from paramagnetism to intralayer antiferromagnetism (AFl), TN inter ∼ 320 K represents the transition from the AFl structure to the canted antiferromagnetic spin structure (AFmc), while TC ∼ 42 K denotes the …