Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Engineering

Selected Works

Shi Xue Dou

2014

Nanoparticles

Articles 1 - 3 of 3

Full-Text Articles in Physical Sciences and Mathematics

Ultra-Small Fluorescent Inorganic Nanoparticles For Bioimaging, Zhen Li, Qiao Sun, Yian Zhu, Bien Tan, Zhi Ping Xu, S X. Dou Oct 2014

Ultra-Small Fluorescent Inorganic Nanoparticles For Bioimaging, Zhen Li, Qiao Sun, Yian Zhu, Bien Tan, Zhi Ping Xu, S X. Dou

Shi Xue Dou

The novel optical, electrical, and magnetic properties of ultra-small inorganic nanoparticles make them very attractive in diverse applications in the fields of health, clean and renewable energy, and environmental sustainability. This article comprehensively summarizes state-of-the-art fluorescence imaging using ultra-small nanoparticles as probes, including quantum dots, metal nanoclusters, carbon nanomaterials, up-conversion, and silicon nanomaterials.


Platinum Dendritic Nanoparticles With Magnetic Behavior, Wenxian Li, Ziqi Sun, Dongliang Tian, Ivan P. Nevirkovets, S X. Dou Oct 2014

Platinum Dendritic Nanoparticles With Magnetic Behavior, Wenxian Li, Ziqi Sun, Dongliang Tian, Ivan P. Nevirkovets, S X. Dou

Shi Xue Dou

Magnetic nanoparticles have attracted increasing attention for biomedical applications in magnetic resonance imaging, high frequency magnetic field hyperthermia therapies, and magnetic-field-gradient-targeted drug delivery. In this study, three-dimensional (3D) platinum nanostructures with large surface area that features magnetic behavior have been demonstrated. The well-developed 3D nanodendrites consist of plentiful interconnected nano-arms ∼4 nm in size. The magnetic behavior of the 3D dendritic Pt nanoparticles is contributed by the localization of surface electrons due to strongly bonded oxygen/Pluronic F127 and the local magnetic moment induced by oxygen vacancies on the neighboring Pt and O atoms. The magnetization of the nanoparticles exhibits a …


Enhancing Superconducting Properties Of Mgb2 Pellets By Addition Of Amorphous Magnetic Ni-Co-B Nanoparticles, Mislav Mustapic, Josip Horvat, Md Shahriar Hossain, Zeljko Skoko, S X. Dou Mar 2014

Enhancing Superconducting Properties Of Mgb2 Pellets By Addition Of Amorphous Magnetic Ni-Co-B Nanoparticles, Mislav Mustapic, Josip Horvat, Md Shahriar Hossain, Zeljko Skoko, S X. Dou

Shi Xue Dou

Amorphous magnetic Ni-Co-B nanoparticles with an average size of 5 nm were added to precursor powders of MgB2 superconductor. The preparation procedure for MgB2 pellets was optimized for obtaining the best critical current density (Jc) at elevated magnetic fields. Addition of Ni-Co-B decreases the Jc for heat treatment of precursor powders at 650 ° C. Heat treatments at 770 ° C and higher improve Jc at 20 and 5 K. This improvement occurs at both temperatures through the increase of the effective connectivity between MgB2 crystals. Vortex pinning was enhanced at 5 K, but not at 20 K. Ni-Co-B nanoparticles …