Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Engineering

Missouri University of Science and Technology

2016

Keyword
Publication
Publication Type

Articles 1 - 30 of 39

Full-Text Articles in Physical Sciences and Mathematics

Enhancements In Localized Classification For Uterine Cervical Cancer Digital Histology Image Assessment, Peng Guo, Haidar A. Almubarak, Koyel Banerjee, R. Joe Stanley, L. Rodney Long, Sameer K. Antani, George R. Thoma, Rosemary E. Zuna, Shelliane R. Frazier, Randy Hays Moss, William V. Stoecker Dec 2016

Enhancements In Localized Classification For Uterine Cervical Cancer Digital Histology Image Assessment, Peng Guo, Haidar A. Almubarak, Koyel Banerjee, R. Joe Stanley, L. Rodney Long, Sameer K. Antani, George R. Thoma, Rosemary E. Zuna, Shelliane R. Frazier, Randy Hays Moss, William V. Stoecker

Electrical and Computer Engineering Faculty Research & Creative Works

Background: In previous research, we introduced an automated, localized, fusion-based approach for classifying uterine cervix squamous epithelium into Normal, CIN1, CIN2, and CIN3 grades of cervical intraepithelial neoplasia (CIN) based on digitized histology image analysis. As part of the CIN assessment process, acellular and atypical cell concentration features were computed from vertical segment partitions of the epithelium region to quantize the relative distribution of nuclei.

Methods: Feature data was extracted from 610 individual segments from 61 images for epithelium classification into categories of Normal, CIN1, CIN2, and CIN3. The classification results were compared against CIN labels obtained from two pathologists …


Shape Analysis Of Traffic Flow Curves Using A Hybrid Computational Analysis, Wasim Irshad Kayani, Shikhar P. Acharya, Ivan G. Guardiola, Donald C. Wunsch, B. Schumacher, Isaac Wagner-Muns Nov 2016

Shape Analysis Of Traffic Flow Curves Using A Hybrid Computational Analysis, Wasim Irshad Kayani, Shikhar P. Acharya, Ivan G. Guardiola, Donald C. Wunsch, B. Schumacher, Isaac Wagner-Muns

Engineering Management and Systems Engineering Faculty Research & Creative Works

This paper highlights and validates the use of shape analysis using Mathematical Morphology tools as a means to develop meaningful clustering of historical data. Furthermore, through clustering more appropriate grouping can be accomplished that can result in the better parameterization or estimation of models. This results in more effective prediction model development. Hence, in an effort to highlight this within the research herein, a Back-Propagation Neural Network is used to validate the classification achieved through the employment of MM tools. Specifically, the Granulometric Size Distribution (GSD) is used to achieve clustering of daily traffic flow patterns based solely on their …


Natural Convection And Forced Convection Model Based On Electroneutrality And Migration In Redox Mhd Systems, Fangping Yuan, Kakkattukuzhy M. Isaac Oct 2016

Natural Convection And Forced Convection Model Based On Electroneutrality And Migration In Redox Mhd Systems, Fangping Yuan, Kakkattukuzhy M. Isaac

Collaborative Research: Actively Controllable Microfluidics with Film-Confined Redox-Magnetohydrodynamics -- Video and Data

No abstract provided.


Computational Fluid Dynamics Study Of Molten Steel Flow Patterns And Particle-Wall Interactions Inside A Slide-Gate Nozzle By A Hybrid Turbulent Model, Mahdi Mohammadi-Ghaleni, Mohsen Asle Zaeem, Jeffrey D. Smith, Ronald J. O'Malley Oct 2016

Computational Fluid Dynamics Study Of Molten Steel Flow Patterns And Particle-Wall Interactions Inside A Slide-Gate Nozzle By A Hybrid Turbulent Model, Mahdi Mohammadi-Ghaleni, Mohsen Asle Zaeem, Jeffrey D. Smith, Ronald J. O'Malley

Materials Science and Engineering Faculty Research & Creative Works

Melt flow patterns and turbulence inside a slide-gate throttled submerged entry nozzle (SEN) were studied using Detached–Eddy Simulation (DES) model, which is a combination of Reynolds–Averaged Navier–Stokes (RANS) and Large–Eddy Simulation (LES) models. The DES switching criterion between RANS and LES was investigated to closely reproduce the flow structures of low and high turbulence regions similar to RANS and LES simulations, respectively. The melt flow patterns inside the nozzle were determined by k–ε (a RANS model), LES, and DES turbulent models, and convergence studies were performed to ensure reliability of the results. Results showed that the DES model has significant …


High-Frequency Instabilities Of Stationary Crossflow Vortices In A Hypersonic Boundary Layer, Fei Li, Meelan Choudhari, Pedro Paredes-Gonzalez, Lian Duan Sep 2016

High-Frequency Instabilities Of Stationary Crossflow Vortices In A Hypersonic Boundary Layer, Fei Li, Meelan Choudhari, Pedro Paredes-Gonzalez, Lian Duan

Mechanical and Aerospace Engineering Faculty Research & Creative Works

Hypersonic boundary layer flows over a circular cone at moderate incidence angle can support strong crossflow instability in between the windward and leeward rays on the plane of symmetry. Due to more efficient excitation of stationary crossflow vortices by surface roughness, such boundary layer flows may transition to turbulence via rapid amplification of the high-frequency secondary instabilities of finite-amplitude stationary crossflow vortices. The amplification characteristics of these secondary instabilities are investigated for crossflow vortices generated by an azimuthally periodic array of roughness elements over a 7° half-angle circular cone in a Mach 6 free stream. The analysis is based on …


Chaotic Advection-Driven Mixing In Unsteady Three-Dimensional Mhd Flows In Microfluidic Devices, Fangping Yuan, Kakkattukuzhy M. Isaac Jun 2016

Chaotic Advection-Driven Mixing In Unsteady Three-Dimensional Mhd Flows In Microfluidic Devices, Fangping Yuan, Kakkattukuzhy M. Isaac

Collaborative Research: Actively Controllable Microfluidics with Film-Confined Redox-Magnetohydrodynamics -- Video and Data

No abstract provided.


The Anisotropy Of Hexagonal Close-Packed And Liquid Interface Free Energy Using Molecular Dynamics Simulations Based On Modified Embedded-Atom Method, Ebrahim Asadi, Mohsen Asle Zaeem Apr 2016

The Anisotropy Of Hexagonal Close-Packed And Liquid Interface Free Energy Using Molecular Dynamics Simulations Based On Modified Embedded-Atom Method, Ebrahim Asadi, Mohsen Asle Zaeem

Materials Science and Engineering Faculty Research & Creative Works

This work aims to comprehensively study the anisotropy of the hexagonal close-packed (HCP)-liquid interface free energy using molecular dynamics (MD) simulations based on the modified-embedded atom method (MEAM). As a case study, all the simulations are performed for Magnesium (Mg). The solid-liquid coexisting approach is used to accurately calculate the melting point and melting properties. Then, the capillary fluctuation method (CFM) is used to determine the HCP-liquid interface free energy (γ) and anisotropy parameters. In CFM, a continuous order parameter is employed to accurately locate the HCP-liquid interface location, and the HCP symmetry-adapted spherical harmonics are used to expand γ …


Graphene Valley, Daniel Applebaum Feb 2016

Graphene Valley, Daniel Applebaum

Missouri S&T’s Peer to Peer

Silicon Valley in northern California is the proverbial hub of technological innovation and industry. Its namesake derives from the fact that silicon acts as the main component in modern electronics; however, a new material called graphene is challenging its role. In its early years of research, it was evident that the qualities of graphene far exceeded expectations. Industries are going mad trying to come up with applications and consumer products. While headway has been made, it is hard to say how long it will take to see products advertising their new graphene capabilities. Before touch screens or graphene-based microprocessors can …


Characterization Of Fracture Initiation In Non-Cylindrical Buckle Folds Using 3d Finite Element Analysis, Eli Jacob Steinbeck Jan 2016

Characterization Of Fracture Initiation In Non-Cylindrical Buckle Folds Using 3d Finite Element Analysis, Eli Jacob Steinbeck

Masters Theses

"The spatial distribution of fracture sets associated with buckle folds has been well documented in field studies. There are difficulties, however, in placing accurate constraints on the timing of the initiation of individual fracture sets during the deformation history of the fold under in-situ conditions. This study investigates specific conditions that give rise to the initiation of various fracture sets in the hinge and limb of a pericline, based on an analysis of the effective stress evolution during the processes of buckling and erosional unloading. A 3D finite element modeling approach is used to simulate the effective stress evolution in …


Fluid Flow Through Deformation Band, Huining Zhang Jan 2016

Fluid Flow Through Deformation Band, Huining Zhang

Masters Theses

"Cataclastic deformation bands, which are common in porous sandstone, have the potential to restrict fluid flow. Geological studies have shown that permeability of deformation band shear zones can be one to five orders of magnitude less than for the sandstone host rock. However, recent studies based on simplified analytical estimates have shown that fluid flow in jointed deformation bands may not be retarded since joints play an important role in conducting fluids. In this study, 2 dimensional finite element analysis (FEA) is used to simulate the total discharge flow rate through jointed deformations. Variations of single planar and conjugate jointed …


Integrated Geophysical Approach Using Electrical Resistivity Tomography And Multichannel Analysis Of Surface Wave In Assessing Wilson Spring Development, Ibrahim E. Ahmed Jan 2016

Integrated Geophysical Approach Using Electrical Resistivity Tomography And Multichannel Analysis Of Surface Wave In Assessing Wilson Spring Development, Ibrahim E. Ahmed

Doctoral Dissertations

"This research investigated fractured zones leading to preferential flow paths of Wilson Spring. In this context, electrical resistivity tomography (ERT) data and multi-channel analyses of surface waves (MASW) data were acquired at studied site with the purpose of mapping a variable depth to top of bedrock and geological structures.

Interpretation of the boreholes, MASW, and ERT data indicated that a depth to top of rock does vary significantly at the studied site due to many solution-widened fractures. Multiple near-vertical solution-widened fractures were mapped in the studied site based on the interpretation of the ERT data. The mapped solution-widened fractures appear …


Phytoforensics Tools: The Degradation And Detection Of Chlorinated Solvents In Integrated Systems, Tommy J. Goodwin Jr. Jan 2016

Phytoforensics Tools: The Degradation And Detection Of Chlorinated Solvents In Integrated Systems, Tommy J. Goodwin Jr.

Masters Theses

"Due to decades of mismanaged pollutants entering groundwater, subsurface pollution of various compounds has become a widespread challenge. Chlorinated solvents are the most common groundwater contaminants that persist in aquifers, and remediation of these wide-spread plumes is difficult. Bioremediation, permeable reactive barriers, and phytoremediation are remedial technologies that have been developed and applied to chlorinated solvents in groundwater systems. This study integrates these technologies in different combinations to demonstrate the remediation potential of this approach. Zerovalent iron (ZVI) and bioaugmentation with a Dehalococcoides sp. (DHC) culture were applied separately and in combination for degradation of perchloroethene (PCE). Salix pentandra were …


3d Seismic Structural And Stratigraphic Interpretation Of The Tui-3d Field, Taranaki Basin, New Zealand, Gorkem Yagci Jan 2016

3d Seismic Structural And Stratigraphic Interpretation Of The Tui-3d Field, Taranaki Basin, New Zealand, Gorkem Yagci

Masters Theses

"Identifying seismic structures and stratigraphy are important for exploration of hydrocarbons. The purpose of this study is to discover seismic structural and stratigraphic features and to utilize the results for interpreting depositional environments. A 3D seismic dataset from the Tui-3D Field, the Taranaki Basin, New Zealand with well data were used to visualize structures, to detect stratigraphic features, to identify main lithology, to understand depositional environment, and to describe seismic facies and reflection patterns of the target horizons. The major formations are in the Kapuni Group.

Seismic structural interpretation indicates thirty-two minor faults, which may play an important role in …


Single Particle-Inductively Coupled Plasma-Mass Spectrometry Technology Development For Metallic Nanoparticle Characterization In Complex Matrices, Yongbo Dan Jan 2016

Single Particle-Inductively Coupled Plasma-Mass Spectrometry Technology Development For Metallic Nanoparticle Characterization In Complex Matrices, Yongbo Dan

Doctoral Dissertations

"As the rapid growing of nanotechnology, the release of engineered nanoparticles (ENPs) into the environment is inevitable. After entering the real environment, ENPs tend to react with different components of the ecosystem (e.g. water, soil, air, plants) and make their characterization difficult. Analyzing ENPs in these complex matrices still remains as a grand challenge. ENPs characterization is normally the first step of risk assessment. Current analytical techniques have shown some limitations in revealing the unique characteristics of ENPs in complex matrices and reliable analytical techniques are in urgent need. Single particle inductively coupled plasma mass spectrometry (SP-ICP-MS) is an emerging …


Bioactivity/Cytotoxicity Of Micro-/Nano-Materials And Novel Development Of Fiber-Optic Probes For Single Cell Monitoring, Qingbo Yang Jan 2016

Bioactivity/Cytotoxicity Of Micro-/Nano-Materials And Novel Development Of Fiber-Optic Probes For Single Cell Monitoring, Qingbo Yang

Doctoral Dissertations

"Manufactured nano-/micro-materials (MNMs) have been widely used and their interactions with niche biological environment are highly concerned for both of their biohazardous and bioactive effects, whereas no available comprehensive evaluations or regulations have been provided yet. This dissertation thus focuses on three major aspects: 1) fundamental toxicity understandings of a typical MNMs (zinc oxide nanoparticles), 2) bioactivity evaluations of representative bioactive MNMs, and 3) development of novel micro-probes for high spatial resolution monitoring. Firstly, the NP's concentration, irradiation, hydrodynamic size, and the localized pH, ionic strength, NP zeta-potential as well as dissolved oxygen levels were found correlated with the production …


A Feasibility Study Of A Nuclear Power Plant With No Moving Parts, Jonathan Mark Schattke Jan 2016

A Feasibility Study Of A Nuclear Power Plant With No Moving Parts, Jonathan Mark Schattke

Masters Theses

"In a nuclear reactor design, every moving part in a system is considered a failure point. In this study, a proposal is made for designing a nuclear reactor that has no moving parts by coupling an accelerator driven core (removing control system moving parts) to a magnetohydrodynamic generator (removing power generation moving parts) using mercury coolant (removing pumping system moving parts). Further safety is realized by using a subcritical core, where the core is never able to sustain a chain reaction on its own, obviating many safety systems. The design is verified with a Monte Carlo simulation "--Abstract, page iii.


Attenuation Properties Of Cement Composites: Experimental Measurements And Monte Carlo Calculations, Raul Florez Jan 2016

Attenuation Properties Of Cement Composites: Experimental Measurements And Monte Carlo Calculations, Raul Florez

Masters Theses

"Developing new cement based materials with excellent mechanical and attenuation properties is critically important for both medical and nuclear power industries. Concrete continues to be the primary choice material for the shielding of gamma and neutron radiation in facilities such as nuclear reactors, nuclear waste repositories, spent nuclear fuel pools, heavy particle radiotherapy rooms, particles accelerators, among others. The purpose of this research was to manufacture cement pastes modified with magnetite and samarium oxide and evaluate the feasibility of utilizing them for shielding of gamma and neutron radiation. Two different experiments were conducted to accomplish these goals. In the first …


Intensity Control Of Dielectric Barrier Discharge Filaments, Matthew Crawford Paliwoda Jan 2016

Intensity Control Of Dielectric Barrier Discharge Filaments, Matthew Crawford Paliwoda

Masters Theses

"When operated in a filamentary mode, a volume dielectric barrier discharge (DBD) is known to produce patterned plasma structures. These structures are currently being explored for reconfigurable metamaterial applications. In this work the presence and intensity of a single filament, within an array of filaments, was controlled by adjusting the voltage to that filament's individual needle electrode. The current, voltage, and time-averaged normalized light intensity were measured while varying the voltage of the needle through a self-biasing resistance. For a 7.5 kV, 3.2 kHz DBD in air, the needle-controlled filament intensity varies from that of the surrounding filaments to zero …


Composite Model Representation For Computer Aided Design Of Functionally Gradient Materials, Fangquan Wang Jan 2016

Composite Model Representation For Computer Aided Design Of Functionally Gradient Materials, Fangquan Wang

Masters Theses

"Functionally Gradient Materials (FGMs) feature smooth transition from one material to another within a single object. FGMs modeling is considered to be one of the new challenges in Computer Aided Design (CAD) area. To overcome this challenge, this thesis presents a composite approach to model FGMs. The input in STL format can be meshed and voxelized in FGMs modeling system. The material composition in each voxel can be generated from multiple different types of control features. And LTI filters including Gaussian Filter and Average Filter are applied to blur default material features in order to generate FGMs inside models. The …


A Linear Matrix Inequality-Based Approach For The Computation Of Actuator Bandwidth Limits In Adaptive Control, Daniel Robert Wagner Jan 2016

A Linear Matrix Inequality-Based Approach For The Computation Of Actuator Bandwidth Limits In Adaptive Control, Daniel Robert Wagner

Masters Theses

"Linear matrix inequalities and convex optimization techniques have become popular tools to solve nontrivial problems in the field of adaptive control. Specifically, the stability of adaptive control laws in the presence of actuator dynamics remains as an important open control problem. In this thesis, we present a linear matrix inequalities-based hedging approach and evaluate it for model reference adaptive control of an uncertain dynamical system in the presence of actuator dynamics. The ideal reference dynamics are modified such that the hedging approach allows the correct adaptation without being hindered by the presence of actuator dynamics. The hedging approach is first …


Dft Investigations Of Hydrogen Storage Materials, Gang Wang Jan 2016

Dft Investigations Of Hydrogen Storage Materials, Gang Wang

Doctoral Dissertations

"Hydrogen serves as a promising new energy source having no pollution and abundant on earth. However the most difficult problem of applying hydrogen is to store it effectively and safely, which is smartly resolved by attempting to keep hydrogen in some metal hydrides to reach a high hydrogen density in a safe way. There are several promising metal hydrides, the thermodynamic and chemical properties of which are to be investigated in this dissertation.

Sodium alanate (NaAlH4) is one of the promising metal hydrides with high hydrogen storage capacity around 7.4 wt. % and relatively low decomposition temperature of …


Numerical Analysis Of Flexural Slip During Viscoelastic Buckle Folding, Davi Rodrigues Damasceno Jan 2016

Numerical Analysis Of Flexural Slip During Viscoelastic Buckle Folding, Davi Rodrigues Damasceno

Masters Theses

"Flexural slip is considered to be an important folding mechanism contributing in the development of different folds such as chevron, and kink-band buckle folds. Various filed studies have provided a general conceptual and qualitative understanding of flexural slip. However, quantitative evidence of the importance of the flexural slip mechanism during fold evolution is sparse, as the actual amount of surface parallel displacement, and timing, is difficult to measure accurately, due to the lack of suitable strain markers.

In this study 2D finite element analysis is used to overcome these disadvantages and to simulate flexural slip during viscoelastic buckle folding. Variations …


Experimental Investigation Of Fracture Width Limitations Of Granular Lost Circulation Treatments, Mortadha Al-Saba, Runar Nygaard, Arild Saasen, Olav Magnar Nes Jan 2016

Experimental Investigation Of Fracture Width Limitations Of Granular Lost Circulation Treatments, Mortadha Al-Saba, Runar Nygaard, Arild Saasen, Olav Magnar Nes

Geosciences and Geological and Petroleum Engineering Faculty Research & Creative Works

Drilling fluid losses into fractured shales is a major challenge. Lost circulation treatments are widely applied to mitigate the losses; however, the effectiveness of these treatments is affected by different physical properties of the used lost circulation materials (LCM). This paper presents an experimental investigation to study the effect of LCM type, concentration, particle size distribution, temperature, and LCM shape on the formed seal integrity, with respect to differential pressure, at different fracture widths. The overall objective of this study is to address the effectiveness of LCM treatments in sealing fractured shales, with specific application to the over consolidated Barents …


Oxidative Dehydrogenation Of Light Alkanes With Carbon Dioxide, Marktus A. Atanga Jan 2016

Oxidative Dehydrogenation Of Light Alkanes With Carbon Dioxide, Marktus A. Atanga

Masters Theses

”Most experts studying the global ecosystem and climate suggest that rising anthropogenic CO2 emissions have contributed to significant global climate change in the last half-century. The development of effective strategies that convert CO2 into energy, fuels, and chemicals are greatly preferable to oceanic or geologic sequestration options because they offer the potential to create new commercially-viable products from renewable carbon feedstock. On the other hand, the selective oxidative dehydrogenation of light alkanes (C2-C4) to corresponding olefins, methane reforming, and methane coupling are the major challenges for producing valuable and versatile feedstocks. The oxidative dehydrogenation …


Assessing Downstream Stormwater Impacts For Urban Watershed Planning, Johanna Meyer Pavlowsky Jan 2016

Assessing Downstream Stormwater Impacts For Urban Watershed Planning, Johanna Meyer Pavlowsky

Masters Theses

"The urbanization of watersheds has caused debilitating effects to downstream aquatic ecosystems in catchments and streams. The implementation of green infrastructure (GI), such as permeable pavements and bioretention facilities, has been shown to alleviate these effects by both reducing runoff and mitigating pollutants; however, the implements are often not designed with a specific goal of water improvement. This study targets understanding a small, impaired urban watershed, and the benefits green infrastructure may have to provide environmental, social, and economic improvement to the watershed.

Portions of Rolla including much of the S&T campus drain into the impaired urban waterbody Frisco Lake, …


Managing Risks Of Market Price Uncertainty For A Microgrid Operation, Sriram Raghavan Jan 2016

Managing Risks Of Market Price Uncertainty For A Microgrid Operation, Sriram Raghavan

Masters Theses

"After deregulation of electricity in the United States, the day-ahead and real-time markets allow load serving entities and generation companies to bid and purchase/sell energy under the supervision of the independent system operator (ISO). The electricity market prices are inherently uncertain, and can be highly volatile. The main objective of this thesis is to hedge against the risk from the uncertainty of the market prices when purchasing/selling energy from/to the market. The energy manager can also schedule distributed generators (DGs) and storage of the microgrid to meet the demand, in addition to energy transactions from the market. The risk measure …


Tracking Silver, Gold, And Titanium Dioxide Nanoparticles Through Drinking Water Systems By Single Particle - Inductively Coupled Plasma - Mass Spectrometry, Ariel Renee Donovan Jan 2016

Tracking Silver, Gold, And Titanium Dioxide Nanoparticles Through Drinking Water Systems By Single Particle - Inductively Coupled Plasma - Mass Spectrometry, Ariel Renee Donovan

Masters Theses

"Single particle (SP)-ICP-MS methods were developed to characterize and quantify Ti-containing, titanium dioxide, silver, and gold NP concentration, size, size distribution and dissolved metal element concentration in surface water and treated drinking water. The effectiveness of conventional drinking water treatments (including lime softening, alum coagulation, filtration, and disinfection) to remove NPs from surface water was evaluated using six-gang stirrer jar test simulations. Six-gang stirrers were used to simulate drinking water treatments including lime softening, alum coagulation, powdered activated carbon sorption, filtration, and disinfection by free chlorine. Lime softening effectively removed most nanoparticles added. Source and drinking waters from three large …


Ionic And Electronic Conductivities Of Atomic Layer Deposition Thin Film Coated Lithium Ion Battery Cathode Particles, Rajankumar L. Patel, Jonghyun Park, Xinhua Liang Jan 2016

Ionic And Electronic Conductivities Of Atomic Layer Deposition Thin Film Coated Lithium Ion Battery Cathode Particles, Rajankumar L. Patel, Jonghyun Park, Xinhua Liang

Mechanical and Aerospace Engineering Faculty Research & Creative Works

It is imperative to ascertain the ionic and electronic components of the total conductivity of an electrochemically active material. A blocking technique, called the “Hebb-Wagner method”, is normally used to explain the two components (ionic and electronic) of a mixed conductor, in combination with the complex ac impedance method and dc polarization measurements. CeO2 atomic layer deposition (ALD)-coated and uncoated, LiMn2O4 (LMO) and LiMn1.5Ni0.5O4 (LMNO) powders were pressed into pellets and then painted with silver to act as a blocking electrode. The electronic conductivities were derived from the currents obtained using …


Identifying Shallow Subsurface Stratigraphy And Voids Using Dispersive Characteristics Of Electromagnetic And Surface Waves, Payman Hajiani Jan 2016

Identifying Shallow Subsurface Stratigraphy And Voids Using Dispersive Characteristics Of Electromagnetic And Surface Waves, Payman Hajiani

Doctoral Dissertations

"This dissertation presents the results of three manuscripts on spectral analysis of electromagnetic and seismic surface waves to detect subsurface stratigraphy and voids. In the first manuscript, a new technique was developed by utilizing spectral analysis of surface waves to detect subsurface openings. This technique applied the concept of group delay to evaluate the effects of subsurface voids on the phase shift domain. Seismic data sets were acquired at different sites where the shape, size, and depth of the void varied. In all surveys, the time delay technique precisely identified the locations of the subsurface openings. The second manuscript presents …


Imaging Reinforced Concrete: A Comparative Study Of Ground Penetration Radar And Rebarscope, Abhishek Kodi Jan 2016

Imaging Reinforced Concrete: A Comparative Study Of Ground Penetration Radar And Rebarscope, Abhishek Kodi

Masters Theses

"Geophysical techniques have been playing a very vital role in subsurface imaging in the recent past. Technology has been making it both reliable and convenient to utilize non-destructive geophysics techniques like Ground Penetration Radar, Induction current based Rebarscope, Seismic methods, ERT, etc. The applications range from shallow subsurface investigation of Bridge decks to old tunnels, mapping of rabars in a pre-existing construction and analyzing the concrete strength.

The thesis constitutes of a comparative study and analysis of a Ground Penetration Radar system and a Rebarscope. Individual parameters obtained directly from the study and obtained indirectly from the study shall be …