Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 7 of 7

Full-Text Articles in Physical Sciences and Mathematics

Computational Intelligent Impact Force Modeling And Monitoring In Hislo Conditions For Maximizing Surface Mining Efficiency, Safety, And Health, Danish Ali Jan 2021

Computational Intelligent Impact Force Modeling And Monitoring In Hislo Conditions For Maximizing Surface Mining Efficiency, Safety, And Health, Danish Ali

Doctoral Dissertations

"Shovel-truck systems are the most widely employed excavation and material handling systems for surface mining operations. During this process, a high-impact shovel loading operation (HISLO) produces large forces that cause extreme whole body vibrations (WBV) that can severely affect the safety and health of haul truck operators. Previously developed solutions have failed to produce satisfactory results as the vibrations at the truck operator seat still exceed the “Extremely Uncomfortable Limits”. This study was a novel effort in developing deep learning-based solution to the HISLO problem.

This research study developed a rigorous mathematical model and a 3D virtual simulation model to …


Exposure Assessment Of Emerging Contaminants: Rapid Screening And Modeling Of Plant Uptake, Majid Bagheri Jan 2021

Exposure Assessment Of Emerging Contaminants: Rapid Screening And Modeling Of Plant Uptake, Majid Bagheri

Doctoral Dissertations

"With the advent of new chemicals and their increasing uses in every aspect of our life, considerable number of emerging contaminants are introduced to environment yearly. Emerging contaminants in forms of pharmaceuticals, detergents, biosolids, and reclaimed wastewater can cross plant roots and translocate to various parts of the plants. Long-term human exposure to emerging contaminants through food consumption is assumed to be a pathway of interest. Thus, uptake and translocation of emerging contaminants in plants are important for the assessment of health risks associated with human exposure to emerging contaminants. To have a better understanding over fate of emerging contaminants …


Fiber Optic Sensors For Industry And Military Applications, Yiyang Zhuang Jan 2021

Fiber Optic Sensors For Industry And Military Applications, Yiyang Zhuang

Doctoral Dissertations

"Fiber optic sensors (FOSs) have been widely used for measuring various physical and chemical measurands owing to their unique advantages over traditional sensors such as small size, high resolution, distributed sensing capabilities, and immunity to electromagnetic interference. This dissertation focuses on the development of robust FOSs with ultrahigh sensitivity and their applications in industry and military areas.

Firstly, novel fiber-optic extrinsic Fabry-Perot interferometer (EFPI) inclinometers for one- and two-dimensional tilt measurements with 20 nrad resolution were demonstrated. Compared to in-line fiber optic inclinometers, an extrinsic sensing motif was used in our prototype inclinometer. The variations in tilt angle of the …


Reveal Wind Loading Of Tornadoes And Hurricanes On Civil Structures Towards Hazard-Resistant Design, Ryan Honerkamp Jan 2021

Reveal Wind Loading Of Tornadoes And Hurricanes On Civil Structures Towards Hazard-Resistant Design, Ryan Honerkamp

Doctoral Dissertations

"Extreme winds impacting civil structures lead to death and destruction in all regions of the world. Specifically, tornadoes and hurricanes impact communities with severe devastation. On average, 1200 tornadoes occur in the United States every year. Tornadoes occur predominantly in the Central and Southeastern United States, accounting for an annual $1 billion in economic losses, 1500 injuries, and 90 deaths. The Joplin, MO Tornado in 2011 killed 161 people, injured more than 1000, destroyed more than 8000 structures, and caused $2.8 billion of property loss. Hurricanes occur predominantly on the United States East coast regions and along the coast of …


Semi-Empirical Modeling Of Liquid Carbon's Containerless Solidification, Philip C. Chrostoski Jan 2021

Semi-Empirical Modeling Of Liquid Carbon's Containerless Solidification, Philip C. Chrostoski

Doctoral Dissertations

“Elemental carbon has important structural diversity, ranging from nanotubes through graphite to diamond. Previous studies of micron-size core/rim carbon spheres extracted from primitive meteorites suggest they formed around such stars via the solidification of condensed carbon-vapor droplets, followed by gas-to-solid carbon coating to form the graphite rims. Similar core/rim particles result from the slow cooling of carbon vapor in the lab. The long-range carbon bond-order potential was used to computationally study liquid-like carbon in (1.8 g/cm3) periodic boundary (tiled-cube supercell) and containerless (isolated cluster) settings. Relaxations via conjugate-gradient and simulated-annealing nucleation and growth simulations using molecular dynamics were …


Relating Detonation Parameters To The Detonation Synthesis Of Nanomaterials, Martin Langenderfer Jan 2021

Relating Detonation Parameters To The Detonation Synthesis Of Nanomaterials, Martin Langenderfer

Doctoral Dissertations

“This research investigates the physical and chemical processes that contribute to the detonation synthesis of silicon carbide nanoparticles. Bulk production of SiC nanoparticles through detonation is possible due to pressures achieved over 20 GPa and temperatures over 2000 K as well as quenching rates in excess of 13 billion K/second. These conditions catalyze reaction and bottom-up molecular growth while retaining particles < 100 nm in diameter. In this work, detonation synthesis of SiC was demonstrated by incorporation of polycarbosilane, an SiC precursor material, into an RDX/TNT explosive matrix prior to detonation. Detonation Synthesis of SiC was also accomplished by reacting elemental silicon with carbon liberated by the detonation of negatively oxygen balanced TNT. Hydrodynamic simulation of a 60:40 mass ratio RDX/TNT detonation created conditions thermodynamically suitable to produce cubic silicon carbide within the first 500 nanoseconds after the passage of the detonation wave while carbon remains chemically reactive for molecular formation. Simulations and experimental tests indicated that loading configuration and impedance mismatch of the precursor additives used in detonation synthesis results in conditions in the additives that exceed the accepted detonation pressure of the explosive by greater than three times. Finally, a full factorial experimental design showed increasing silicon concentration, reducing silicon size, and reducing oxygen balance by adjusting the ratio of RDX to TNT decreased the explosives detonation pressure by 20% and increased the soot yield and concentration of SiC observed in the detonation products by 82% and 442% respectively”--Abstract, page iv.


Designing Transition Metal Chalcogenides Electrocatalyst Surfaces For High-Efficiency Water Oxidation, Umanga De Silva Jan 2021

Designing Transition Metal Chalcogenides Electrocatalyst Surfaces For High-Efficiency Water Oxidation, Umanga De Silva

Doctoral Dissertations

”The rising demand for energy security and reducing fossil fuel dependence has prompted researchers to search for a clean, sustainable, and efficient energy generation system with low environmental impact. Water electrolysis has been identified as one of the most important processes satisfying the above needs to generate hydrogen as a clean fuel. Two half-cell reactions of oxygen evolution reaction (OER) at the anode and hydrogen evolution reaction (HER) at the cathode comprise the main process of water electrolysis. However, the oxygen evolution reaction is the most crucial step for efficient water splitting. Traditionally, metal oxides have been utilized as catalysts …