Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Engineering

PDF

Theses/Dissertations

Institution
Keyword
Publication Year
Publication

Articles 1 - 30 of 7332

Full-Text Articles in Physical Sciences and Mathematics

Hitch Cart “Landing Gear”, Rebekah White, Jose Raygoza, Randy Hernandez, Brandon Leon Dec 2024

Hitch Cart “Landing Gear”, Rebekah White, Jose Raygoza, Randy Hernandez, Brandon Leon

Mechanical Engineering

This report aims to allow our sponsor, to review our design process of the Hitch Cart Landing Gear Prototype. In the design overview section of this report, we discuss the primary design modifications we made to the wheel mechanism of the existing hitch cart prototype, including the addition of the ACME screws and the folding brackets. This allows our sponsor to see the intended improvements made to the past prototype and understand the primary goal of our project. Then, in the implementation section, we cover the entire manufacturing process to allow our sponsor to understand what manufacturing steps must be …


Evaluating Neuroimaging Modalities In The A/T/N Framework: Single And Combined Fdg-Pet And T1-Weighted Mri For Alzheimer’S Diagnosis, Peiwang Liu May 2024

Evaluating Neuroimaging Modalities In The A/T/N Framework: Single And Combined Fdg-Pet And T1-Weighted Mri For Alzheimer’S Diagnosis, Peiwang Liu

McKelvey School of Engineering Theses & Dissertations

With the escalating prevalence of dementia, particularly Alzheimer's Disease (AD), the need for early and precise diagnostic techniques is rising. This study delves into the comparative efficacy of Fluorodeoxyglucose Positron Emission Tomography (FDG-PET) and T1-weighted Magnetic Resonance Imaging (MRI) in diagnosing AD, where the integration of multimodal models is becoming a trend. Leveraging data from the Alzheimer's Disease Neuroimaging Initiative (ADNI), we employed linear Support Vector Machines (SVM) to assess the diagnostic potential of these modalities, both individually and in combination, within the AD continuum. Our analysis, under the A/T/N framework's 'N' category, reveals that FDG-PET consistently outperforms T1w-MRI across …


Signal Processing Algorithms For Doppler Lidar Sensors, Samantha Grubb May 2024

Signal Processing Algorithms For Doppler Lidar Sensors, Samantha Grubb

Physics and Astronomy Honors Papers

Light detection and ranging (LiDAR) is a remote sensing technology that obtains relative distance and velocity measurements between a sensor and a defined target by using light transmitted and received from the target. FMCW Doppler LiDAR, a particular variant of LiDAR, functions by analyzing the frequency shift in the reflected light to determine the target's range and velocity. This technology plays a crucial role across various sectors including defense, aerospace, and automotive. This paper presents signal processing algorithms designed to optimize data obtained from Doppler LiDAR sensors. By applying various window functions to time domain data, the Signal-to-Noise Ratio (SNR) …


The Analysis Of Mechanical Exfoliation Of Graphene For Various Fabrication And Automation Techniques, Lance Yarbrough May 2024

The Analysis Of Mechanical Exfoliation Of Graphene For Various Fabrication And Automation Techniques, Lance Yarbrough

Mechanical Engineering Undergraduate Honors Theses

Mechanical Exfoliation of Graphene is an often-overlooked portion of the fabrication of quantum devices, and to create more devices quickly, optimizing this process to generate better flakes is critical. In addition, it would be valuable to simulate test pulls quickly, to gain insight on flake quality of various materials and exfoliation conditions. Physical pulls of graphene at various temperatures, pull forces, and pull repetitions were analyzed and compared to the results of ANSYS simulations, solved for similar results. Using ANSYS’ ability to predict trends in exfoliations, flake thickness and coverage using stress and deflection analyses were investigated. Generally, both strongly …


Examining The Relationship Between Manning's Roughness Coefficient And Stage, Henry Holtkamp May 2024

Examining The Relationship Between Manning's Roughness Coefficient And Stage, Henry Holtkamp

Biological and Agricultural Engineering Undergraduate Honors Theses

This paper uses LOESS regression to predict Manning's roughness coefficient to calculate flows in natural stream channels. Manning's roughness coefficient can introduce variability into Manning's equation, potentially destabilizing results. Utilizing LOESS to find n based on backcalculated n from collected discharge vs. stage information is the best way to acquire accurate Manning's roughness coefficient values at a variety of flows. Book values tend to drastically overestimate which can have wide-ranging implications for water allocation, flood management, maintaining environmental flows, and maintaining water quality.


Encapsulated 2d Materials And The Potential For 1d Electrical Contacts, Sarah Wittenburg May 2024

Encapsulated 2d Materials And The Potential For 1d Electrical Contacts, Sarah Wittenburg

Physics Undergraduate Honors Theses

The utilization of two-dimensional materials and heterostructures, particularly graphene and hexagonal boron nitride, have garnered significant attention in the realm of nanoelectronics due to their unique properties and versatile functionalities. This study focuses on the synthesis and fabrication processes of monolayer graphene encapsulated between layers of hBN, aiming to explore the potential of these heterostructures for various electronic applications. The encapsulation of graphene within hBN layers not only enhances device performance but also shields graphene from environmental contaminants, ensuring long-term stability. Experimental techniques, including mechanical exfoliation and stamp-assisted transfer, are employed to construct three-layer stacks comprising hBN-graphene-hBN. The fabrication process …


A Comprehensive Investigation Of The Influence Of Geometric Structure On The Shape Memory Performance Of Nafion, Jade Thomas May 2024

A Comprehensive Investigation Of The Influence Of Geometric Structure On The Shape Memory Performance Of Nafion, Jade Thomas

Physics Undergraduate Honors Theses

While perfluorosulfonic acid (PFSA) membranes have primarily been used in fuel cells due to their chemical, thermal, and mechanical stability, one PFSA, Nafion, boasts two unique characteristics: a broad glass transition (~55 °C to 130 °C) and a temperature-persistent electrostatic network. The combination of these two characteristics endows Nafion with exceptional shape memory properties – the ability of a material to morph and transform into pre-programmed shapes when exposed to an external stimulus – with enhanced permanent shape memorization, and a potentially near-infinite number of temporary shape memorization. This study focused on expanding the base of knowledge surrounding Nafion’s shape …


A Comprehensive Investigation Of The Influence Of Geometric Structure On The Shape Memory Performance Of Nafion, Jade Thomas May 2024

A Comprehensive Investigation Of The Influence Of Geometric Structure On The Shape Memory Performance Of Nafion, Jade Thomas

Mechanical Engineering Undergraduate Honors Theses

While perfluorosulfonic acid (PFSA) membranes have primarily been used in fuel cells due to their chemical, thermal, and mechanical stability, one PFSA, Nafion, boasts two unique characteristics: a broad glass transition (~55 °C to 130 °C) and a temperature-persistent electrostatic network. The combination of these two characteristics endows Nafion with exceptional shape memory properties – the ability of a material to morph and transform into pre-programmed shapes when exposed to an external stimulus – with enhanced permanent shape memorization, and a potentially near-infinite number of temporary shape memorization. This study focused on expanding the base of knowledge surrounding Nafion’s shape …


Modeling Vibration Stiffness: An Analytical Extension Of Hertzian Theory For Angular Contact Bearings With A Thin Viscoelastic Coating, Davis R. Burton May 2024

Modeling Vibration Stiffness: An Analytical Extension Of Hertzian Theory For Angular Contact Bearings With A Thin Viscoelastic Coating, Davis R. Burton

Honors Theses

This thesis considers the novel angular contact rolling-element bearings proposed by NASA’s Glenn Research Center, which are coated with a thin solid lubricant that exhibits viscoelastic behavior. Current analytical models for the dynamic stiffness matrix of angular contact bearings, critical for vibration analysis, lack the ability to model the effects of a solid coating, as well as the time dependencies inherent in viscoelastic theory. The author first presents an overview of the stiffness matrix derivation, followed by a treatment of the underlying Hertzian contact theory. An analytical extension of this theory is proposed which accounts for a thin elastic layer …


Comparing North American Professional Sports League Season Formats Using Monte Carlo Simulation, Lathan Gregg May 2024

Comparing North American Professional Sports League Season Formats Using Monte Carlo Simulation, Lathan Gregg

Industrial Engineering Undergraduate Honors Theses

Each NFL, NBA, and MLB season consists of a regular season, in which teams play a set number of scheduled games and a playoff, in which qualifying teams compete for a championship. At the conclusion of each season, teams are ranked based on their performance throughout the season. This study aims to investigate the ability of each league's season format to accurately rank teams using Monte Carlo simulation. Matches between two teams are simulated by using the team’s assigned strength ranks to calculate a winning probability for each team. The winning probabilities are simulated with different skill values, dictating how …


Sequential Optimization For Stressor-Informed Test Planning Through Integration Of Experimental And Simulated Data, Jacob Brecheisen May 2024

Sequential Optimization For Stressor-Informed Test Planning Through Integration Of Experimental And Simulated Data, Jacob Brecheisen

Data Science Undergraduate Honors Theses

This technical report details an innovative approach in reliability engineering aimed at maximizing system durability through a synergistic use of physical experimentation and computer-based modeling. Our methodology explores the efficient design and analysis of computer experiments and physical tests to facilitate accelerated reliability growth, while leveraging a sequential integration of data from these two distinct sources: costly physical experiments, characterized by random errors, and inexpensive computer simulations, marked by inherent systematic errors. The key innovation lies in the adoption of a closed-loop design and analysis method. This method begins by identifying a viable subset of important environmental stressors—such as temperature, …


Cost-Risk Analysis Of The Ercot Region Using Modern Portfolio Theory, Megan Sickinger May 2024

Cost-Risk Analysis Of The Ercot Region Using Modern Portfolio Theory, Megan Sickinger

Master's Theses

In this work, we study the use of modern portfolio theory in a cost-risk analysis of the Electric Reliability Council of Texas (ERCOT). Based upon the risk-return concepts of modern portfolio theory, we develop an n-asset minimization problem to create a risk-cost frontier of portfolios of technologies within the ERCOT electricity region. The levelized cost of electricity for each technology in the region is a step in evaluating the expected cost of the portfolio, and the historical data of cost factors estimate the variance of cost for each technology. In addition, there are several constraints in our minimization problem to …


Oscillations Of Capillary Surfaces With Volume And Edge Effects, Dingqian Ding May 2024

Oscillations Of Capillary Surfaces With Volume And Edge Effects, Dingqian Ding

All Dissertations

Capillary surfaces are defined by an interface endowed with surface tension that is partially supported by a solid substrate and are susceptible to oscillations reflecting a balance between fluid inertia and the restorative force of surface tension. The wave dynamics strongly depend upon volume change within the domain and edge effects through the boundary conditions applied at the contact-line formed at the liquid-gas-solid interface, while the spatial wave structure conforms to the geometry of the capillary surface. This dissertation develops mathematical models to address these effects for several canonical capillary surfaces, which are organized into two parts that are focused …


Numerical Simulation Of Laser Induced Elastic Waves In Response To Short And Ultrashort Laser Pulses., Alireza Zarei May 2024

Numerical Simulation Of Laser Induced Elastic Waves In Response To Short And Ultrashort Laser Pulses., Alireza Zarei

All Dissertations

In an era of intensified market competition, the demand for cost-effective, high-quality, high-performance, and reliable products continues to rise. Meeting this demand necessitates the mass production of premium products through the integration of cutting-edge technologies and advanced materials while ensuring their integrity and safety. In this context, Nondestructive Testing (NDT) techniques emerge as indispensable tools for guaranteeing the integrity, reliability, and safety of products across diverse industries.

Various NDT techniques, including ultrasonic testing, computed tomography, thermography, and acoustic emissions, have long served as cornerstones for inspecting materials and structures. Among these, ultrasonic testing stands out as the most prevalent method, …


Engineering Multifunctional Silicon Nanostructures From Biorenewable Cellulose Nanocrystals, Nancy Chen May 2024

Engineering Multifunctional Silicon Nanostructures From Biorenewable Cellulose Nanocrystals, Nancy Chen

All Dissertations

The imperative search for alternative materials to address the pressing demand for advance energy storage is underscored by the escalating environmental predicaments. Lithium-ion batteries (LIBs) with graphite anodes have become the benchmark in energy storage; however, they are approaching a saturation point in terms of energy density. Silicon emerges as a promising contender to supplant graphite, owing to its profuse availability, cost-effectiveness, and impressive specific capacity of 4200 mAh g-1. By integrating silicon anodes, LIBs stand to undergo a radical transformation, markedly diminishing in weight and size, thus heralding a novel wave of compact, lightweight energy storage systems. …


Design, Fabrication, And Characterization Of Advanced High-Power Single-Mode 9xxnm Semiconductor Lasers, Xiaolei Zhao May 2024

Design, Fabrication, And Characterization Of Advanced High-Power Single-Mode 9xxnm Semiconductor Lasers, Xiaolei Zhao

All Dissertations

This thesis presents the comprehensive design, fabrication, and demonstration of advanced high-power, high-efficiency single-mode semiconductor lasers operating at a wavelength of 9xxnm. We begin with the design of the laser epitaxial structure, serving as the cornerstone for achieving high-power high-efficiency lasers. Our methodology integrates a semi-analytical calculation model, which accounts for Longitudinal Spatial Hole Burning (LSHB) and Two-Photon Absorption (TPA) effects, facilitating a thorough exploration of how design parameters influence output power and conversion efficiency. This approach offers an effective and time-efficient epitaxial structure optimization strategy compared to conventional full 3D simulation models.

Subsequently, we demonstrate high-power, high-efficiency ridge waveguide …


Robust And Trustworthy Deep Learning: Attacks, Defenses And Designs, Bingyin Zhao May 2024

Robust And Trustworthy Deep Learning: Attacks, Defenses And Designs, Bingyin Zhao

All Dissertations

Deep neural networks (DNNs) have achieved unprecedented success in many fields. However, robustness and trustworthiness have become emerging concerns since DNNs are vulnerable to various attacks and susceptible to data distributional shifts. Attacks such as data poisoning and out-of-distribution scenarios such as natural corruption significantly undermine the performance and robustness of DNNs in model training and inference and impose uncertainty and insecurity on the deployment in real-world applications. Thus, it is crucial to investigate threats and challenges against deep neural networks, develop corresponding countermeasures, and dig into design tactics to secure their safety and reliability. The works investigated in this …


Modeling Sex-Specific Changes In Myocardial Fibrosis, Grace Martin May 2024

Modeling Sex-Specific Changes In Myocardial Fibrosis, Grace Martin

Chemical Engineering Undergraduate Honors Theses

Heart disease the leading cause of death for both men and women in the United States. Cardiac fibrosis, or accumulation of extracellular matrix proteins in the heart, can occur after a heart attack and increase the risk for further complications. Current treatments for heart disease do not include extracellular matrix regulators, partly due to the complicated signaling network responsible for the production of these proteins. By using a computational model of the signaling network in cardia fibroblasts, the relationship between particular molecules and downstream extracellular matrix production can be examined.

Biological sex is an important factor for cardiac health and …


Side Channel Detection Of Pc Rootkits Using Nonlinear Phase Space, Rebecca Clark May 2024

Side Channel Detection Of Pc Rootkits Using Nonlinear Phase Space, Rebecca Clark

Honors Theses

Cyberattacks are increasing in size and scope yearly, and the most effective and common means of attack is through malicious software executed on target devices of interest. Malware threats vary widely in terms of behavior and impact and, thus, effective methods of detection are constantly being sought from the academic research community to offset both volume and complexity. Rootkits are malware that represent a highly feared threat because they can change operating system integrity and alter otherwise normally functioning software. Although normal methods of detection that are based on signatures of known malware code are the standard line of defense, …


Machine Learning-Based Gps Jamming And Spoofing Detection, Alberto Squatrito Apr 2024

Machine Learning-Based Gps Jamming And Spoofing Detection, Alberto Squatrito

Doctoral Dissertations and Master's Theses

The increasing reliance on Global Positioning System (GPS) technology across various sectors has exposed vulnerabilities to malicious attacks, particularly GPS jamming and spoofing. This thesis presents an analysis into detection and mitigation strategies for enhancing the resilience of GPS receivers against jamming and spoofing attacks. The research entails the development of a simulated GPS signal and a receiver model to accurately decode and extract information from simulated GPS signals. The study implements the generation of jammed and spoofed signals to emulate potential threats faced by GPS receivers in practical settings. The core innovation lies in the integration of machine learning …


Towards A Practical Method For Monitoring Kinetic Processes In Polymers With Low-Frequency Raman Spectroscopy, Robert Vito Chimenti Apr 2024

Towards A Practical Method For Monitoring Kinetic Processes In Polymers With Low-Frequency Raman Spectroscopy, Robert Vito Chimenti

Theses and Dissertations

Unlike liquids and crystalline solids, glassy materials exist in a constant state of structural nonequilibrium. Therefore, a comprehensive understanding of material kinetics is critical for understanding the structure-property-processing relationships of polymeric materials. Amorphous materials universally display low-frequency Raman features related to the phonon density of states resulting in a broad disorder band for Raman shifts below 100 cm-1, which is related to the conformational entropy and the modulus. This disorder band is dominated by the Boson peak, a feature due to phonon scattering because of disorder and can be related to the transverse sound velocity of the material, and a …


Mathematical Modeling For Dental Decay Prevention In Children And Adolescents, Mahdiyeh Soltaninejad Apr 2024

Mathematical Modeling For Dental Decay Prevention In Children And Adolescents, Mahdiyeh Soltaninejad

Dissertations

The high prevalence of dental caries among children and adolescents, especially those from lower socio-economic backgrounds, is a significant nationwide health concern. Early prevention, such as dental sealants and fluoride varnish (FV), is essential, but access to this care remains limited and disparate. In this research, a national dataset is utilized to assess sealants' reach and effectiveness in preventing tooth decay, particularly focusing on 2nd molars that emerge during early adolescence, a current gap in the knowledge base. FV is recommended to be delivered during medical well-child visits to children who are not seeing a dentist. Challenges and facilitators in …


Exploration Of Characteristic Curve In Fox Float 3 Shock Dampers To Expedite Shock Damp Tuning., Joshua R. Moore Apr 2024

Exploration Of Characteristic Curve In Fox Float 3 Shock Dampers To Expedite Shock Damp Tuning., Joshua R. Moore

Honors College Theses

The shock absorber is an integral part of a vehicle suspension system and has a strong influence on its performance, especially in the case of motorsports. It is important to study the force versus velocity relationship, commonly known as the characteristic curve of the shock absorber both during compression and rebound. Vendor-supplied characteristics often reflect the behavior of the shock absorber in a particular setting. However, during the installation, the settings inside the shock absorber are adjusted to increase the human comfort level and performance of the vehicle. This may change the characteristic curve of the shock. The available data …


Low Cost Magnetometer Calibration And Distributed Simultaneous Multipoint Ionospheric Measurements From A Sounding Rocket Platform, Joshua W. Milford Apr 2024

Low Cost Magnetometer Calibration And Distributed Simultaneous Multipoint Ionospheric Measurements From A Sounding Rocket Platform, Joshua W. Milford

Doctoral Dissertations and Master's Theses

Low-cost and low-size-weight-and-power (SWaP) magnetometers can provide greater accessibility for distributed simultaneous measurements in the ionosphere, either onboard sounding rockets or on CubeSats. The Space and Atmospheric Instrumentation Laboratory (SAIL) at Embry-Riddle Aeronautical University has launched a multitude of sounding rockets in recent history: one night-time mid-latitude rocket from Wallops Flight Facility in August 2022 and three mid-latitude rockets from White Sands Missile Range during the October 2023 annular solar eclipse. All rockets had a comprehensive suite of instruments for electrodynamics and neutral dynamics measurements. Among this suite was one science-grade three-axis fluxgate magnetometer (Billingsley TFM65VQS / TFM100G2) and up …


Extracting Dnn Architectures Via Runtime Profiling On Mobile Gpus, Dong Hyub Kim Mar 2024

Extracting Dnn Architectures Via Runtime Profiling On Mobile Gpus, Dong Hyub Kim

Masters Theses

Due to significant investment, research, and development efforts over the past decade, deep neural networks (DNNs) have achieved notable advancements in classification and regression domains. As a result, DNNs are considered valuable intellectual property for artificial intelligence providers. Prior work has demonstrated highly effective model extraction attacks which steal a DNN, dismantling the provider’s business model and paving the way for unethical or malicious activities, such as misuse of personal data, safety risks in critical systems, or spreading misinformation. This thesis explores the feasibility of model extraction attacks on mobile devices using aggregated runtime profiles as a side-channel to leak …


Investigation Of Gas Dynamics In Water And Oil-Based Muds Using Das, Dts, And Dss Measurements, Temitayo S. Adeyemi Mar 2024

Investigation Of Gas Dynamics In Water And Oil-Based Muds Using Das, Dts, And Dss Measurements, Temitayo S. Adeyemi

LSU Master's Theses

Reliable prediction of gas migration velocity, void fraction, and length of gas-affected region in water and oil-based muds is essential for effective planning, control, and optimization of drilling operations. However, there is a gap in our understanding of gas behavior and dynamics in water and oil-based muds. This is a consequence of the use of experimental systems that are not representative of field-scale conditions. This study seeks to bridge the gap via the well-scale deployment of distributed fiber-optic sensors for real-time monitoring of gas behavior and dynamics in water and oil-based mud. The aforementioned parameters were estimated in real-time using …


An Efficient Privacy-Preserving Framework For Video Analytics, Tian Zhou Mar 2024

An Efficient Privacy-Preserving Framework For Video Analytics, Tian Zhou

Doctoral Dissertations

With the proliferation of video content from surveillance cameras, social media, and live streaming services, the need for efficient video analytics has grown immensely. In recent years, machine learning based computer vision algorithms have shown great success in various video analytic tasks. Specifically, neural network models have dominated in visual tasks such as image and video classification, object recognition, object detection, and object tracking. However, compared with classic computer vision algorithms, machine learning based methods are usually much more compute-intensive. Powerful servers are required by many state-of-the-art machine learning models. With the development of cloud computing infrastructures, people are able …


Investigating Gulf Coast Aquifer System: Stratigraphy Reconstruction, Inverse Modeling, And Groundwater Stress Assessment, Shuo Yang Mar 2024

Investigating Gulf Coast Aquifer System: Stratigraphy Reconstruction, Inverse Modeling, And Groundwater Stress Assessment, Shuo Yang

LSU Doctoral Dissertations

The Mississippi Embayment aquifer system (MEAS) and the Coastal Lowlands aquifer system (CLAS) provide substantial groundwater resources for human activities in the U.S. Gulf Coastal Plain. However, the overexploitation has led to groundwater depletion in the MEAS and the CLAS, threatening sustainable groundwater use. Such concern highlights the crucial need for an advanced understanding of stratigraphy and groundwater in these aquifer systems, which is essential for effective regional groundwater management. This dissertation presents a comprehensive investigation of MEAS and CLAS in the Louisiana and southwestern Mississippi region, encompassing three fundamental dimensions: stratigraphy reconstruction, groundwater modeling, and groundwater stress assessments. A …


Development Of An Integrated Workflow For Nucleosome Modeling And Simulations, Ran Sun Mar 2024

Development Of An Integrated Workflow For Nucleosome Modeling And Simulations, Ran Sun

Doctoral Dissertations

Nucleosomes are the building blocks of eukaryotic genomes and thus fundamental to to all genetic processes. Any protein or drug that binds DNA must either cooperate or compete with nucleosomes. Given that a nucleosome contains 147 base pairs of DNA, there are approximately 4^147 or 10^88 possible sequences for a single nucleosome. Exhaustive studies are not possible. However, genome wide association studies can identify individual nucleosomes of interest to a specific mechanism, and today's supercomputers enable comparative simulation studies of 10s to 100s of nucleosomes. The goal of this thesis is to develop and present and end-to-end workflow that serves …


The Interplay Of Spin, Charge, And Heat: From Metal/Insulator Heterostructures To Perovskite Bilayers, Sam M. Bleser Mar 2024

The Interplay Of Spin, Charge, And Heat: From Metal/Insulator Heterostructures To Perovskite Bilayers, Sam M. Bleser

Electronic Theses and Dissertations

In this dissertation begin with an investigation of non-local spin transport in an amorphous germanium (a-Ge) sample via the inverse spin Hall effect (ISHE). In that study we show that commonly used techniques such as differential conductance and delta mode of a paired Keithley 6221/2182a for non-local resistance measurements can lead to false indicators of spin transport. Next, we turn out attention to a thickness dependent study in thermally-evaporated chromium (Cr) thin films on a bulk polycrystalline yttrium-iron-garnet (YIG) substrate. This project analyzed the spin transport in the Cr films versus thickness via the longitudinal spin Seebeck effect (LSSE). This …