Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Physical Sciences and Mathematics

The Impact Of Crystal Morphology On The Thermal Responses Of Ultrasonically-Excited Energetic Materials, J. K. Miller, J. O. Mares, I. E. Gunduz, Steven F. Son, Jeff Rhoads Dec 2015

The Impact Of Crystal Morphology On The Thermal Responses Of Ultrasonically-Excited Energetic Materials, J. K. Miller, J. O. Mares, I. E. Gunduz, Steven F. Son, Jeff Rhoads

Purdue Energetics Research Center Articles

The ability to detect explosive materials may be significantly enhanced with local increases in vapor pressure caused by an elevation of the materials'temperature. Recently, ultrasonic excitation has been shown to generate heat within plastic-bonded energetic materials. To investigate the impact of crystal morphology on this heating, samples of elastic binder are implanted with single ammonium perchlorate crystals of two distinct shape groups. Contact piezoelectric transducers are then used to excite the samples at ultrasonicfrequencies. The thermal responses of the crystals are recorded using infrared thermography, and the rate of heating is estimated. Surface temperature increases up to 15 °C …


Simulations Of Nanoscale Ni/Al Multilayer Foils With Intermediate Ni2al3 Growth, I. E. Gunduz, S. Onel, C. C. Doumanidis, C. Rebholz, Steven F. Son May 2015

Simulations Of Nanoscale Ni/Al Multilayer Foils With Intermediate Ni2al3 Growth, I. E. Gunduz, S. Onel, C. C. Doumanidis, C. Rebholz, Steven F. Son

Purdue Energetics Research Center Articles

Nanoscale multilayers of binary metallic systems, such as nickel/aluminum, exhibit self-propagating exothermic reactions due to the high formation enthalpy of the intermetallic compounds. Most of the previous modelingapproaches on the reactions of this system rely on the use of mass diffusionwith a phenomenological derived diffusion coefficient representing single-phase (NiAl) growth, coupled with heat transport. We show that the reaction kinetics, temperatures, and thermal front width can be reproduced more satisfactorily with the sequential growth of Ni2Al3 followed by NiAl, utilizing independently obtained interdiffusivities. The computational domain was meshed with a dynamically generated bi-modal grid consisting of fine and coarse zones …