Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Engineering

PDF

Selected Works

Gordon Wallace

Electrodes

Publication Year

Articles 1 - 6 of 6

Full-Text Articles in Physical Sciences and Mathematics

Fabrication Of Graphene Electrodes By Electrophoretic Deposition And Their Synergistic Effects With Pedot And Platinum, Widsanusan Chartarrayawadee, Simon E. Moulton, Chee O. Too, Gordon G. Wallace Mar 2014

Fabrication Of Graphene Electrodes By Electrophoretic Deposition And Their Synergistic Effects With Pedot And Platinum, Widsanusan Chartarrayawadee, Simon E. Moulton, Chee O. Too, Gordon G. Wallace

Gordon Wallace

This research presents a useful electrophoretic deposition (EPD) technique for electrode fabrication from an aqueous colloidal solution of graphene to produce graphene electrodes by the deposition of graphene on to indium-tin oxide (ITO) coated glass. Resultant graphene electrodes are composited with conducting polymer (PEDOT), and platinum nanoparticles, to investigate their synergistic effects. Firstly, PEDOT is composited with graphene by electropolymerization on to the graphene layer. The graphene/PEDOT electrodes demonstrate an improvement in electrochemical response in tetrabutylammonium perchlorate/ acetonitrile solution. Secondly, graphene electrodes are composited with platinum by EPD of platinum nanoparticles on to the graphene layer. The resultant graphene/platinum electrodes …


Facile Synthesis Of Reduced Graphene Oxide/Mwnts Nanocomposite Supercapacitor Materials Tested As Electrophoretically Deposited Films On Glassy Carbon Electrodes, Widsanusan Chartarrayawadee, Simon E. Moulton, Chee O. Too, Byung C. Kim, Rao Yepuri, Anthony C. Romeo, Gordon G. Wallace Mar 2014

Facile Synthesis Of Reduced Graphene Oxide/Mwnts Nanocomposite Supercapacitor Materials Tested As Electrophoretically Deposited Films On Glassy Carbon Electrodes, Widsanusan Chartarrayawadee, Simon E. Moulton, Chee O. Too, Byung C. Kim, Rao Yepuri, Anthony C. Romeo, Gordon G. Wallace

Gordon Wallace

This paper reports on a facile synthesis method for reduced graphene oxide (rGO)/multi-walled carbon nanotubes (MWNTs) nanocomposites. The initial step involves the use of graphene oxide to disperse the MWNTs, with subsequent reduction of the resultant graphene oxide/MWNTs composites using l-ascorbic acid (LAA) as a mild reductant. Reduction by LAA preserves the interaction between the rGO sheets and MWNTs. The dispersion-containing rGO/MWNTs composites was characterized and electrophoretically deposited anodically onto glassy carbon electrodes to form high surface area films for capacitance testing. Pseudo capacitance peaks were observed in the rGO/MWNTs composite electrodes, resulting in superior performance with capacitance values up …


Intrinsically Stretchable Supercapacitors Composed Of Polypyrrole Electrodes And Highly Stretchable Gel Electrolyte, Chen Zhao, Caiyun Wang, Zhilian Yue, Kewei Shu, Gordon G. Wallace Mar 2014

Intrinsically Stretchable Supercapacitors Composed Of Polypyrrole Electrodes And Highly Stretchable Gel Electrolyte, Chen Zhao, Caiyun Wang, Zhilian Yue, Kewei Shu, Gordon G. Wallace

Gordon Wallace

There has been an emerging interest in stretchable power sources compatible with flexible/wearable electronics. Such power sources must be able to withstand large mechanical strains and still maintain function. Here we report a highly stretchable H3PO4-poly(vinyl alcohol) (PVA) polymer electrolyte obtained by optimizing the polymer molecular weight and its weight ratio to H3PO4 in terms of conductivity and mechanical properties. The electrolyte demonstrates a high conductivity of 3.4 x 10-3 S cm-1, and a high fracture strain at 410% elongation. It is mechanically robust with a tensile strength of 2 MPa and a Young's modulus of 1 MPa, and displays …


Electrochemically Synthesized Stretchable Polypyrrole/Fabric Electrodes For Supercapacitor, Binbin Yue, Caiyun Wang, Xin Ding, Gordon G. Wallace Mar 2014

Electrochemically Synthesized Stretchable Polypyrrole/Fabric Electrodes For Supercapacitor, Binbin Yue, Caiyun Wang, Xin Ding, Gordon G. Wallace

Gordon Wallace

Wearable electronics offer the combined advantages of both electronics and fabrics. Being an indispensable part of these electronics, lightweight, stretchable and wearable power sources are strongly demanded. Here we describe a daily-used cotton fabric coated with polypyrrole as electrode for stretchable supercapacitors. Polypyrrole was synthesized on the Au coated fabric via an electrochemical polymerization process with p-toluenesulfonic acid (p-TS) as dopant from acetonitrile solution. This material was characterized with FESEM, tensile stress, and studied as a supercapacitor electrode in 1.0 M NaCl. This conductive textile electrode can sustain up to 140% strain without electric failure. It delivers a high specific …


Pegylation Of Platinum Bio-Electrodes, Zhilian Yue, Paul J. Molino, Xiao Liu, Gordon G. Wallace May 2013

Pegylation Of Platinum Bio-Electrodes, Zhilian Yue, Paul J. Molino, Xiao Liu, Gordon G. Wallace

Gordon Wallace

Controlling protein interactions at the implanted electrode interface is becoming an important strategy for the management of foreign body responses that have proven to be detrimental to the long-term performance of neural prosthesis. In this study, PEGylation was conducted on platinum bio-electrodes to render the surface protein-resistant. The PEGylated electrode was investigated using a quartz crystal microbalance-dissipation, electrochemical impedance spectroscopy and cyclic voltammetiy.


Conducting Polymer Coated Neural Recording Electrodes, Alexander R. Harris, Simon Morgan, Jun Chen, Robert M. Kapsa, Gordon G. Wallace, Antonio Paolini May 2013

Conducting Polymer Coated Neural Recording Electrodes, Alexander R. Harris, Simon Morgan, Jun Chen, Robert M. Kapsa, Gordon G. Wallace, Antonio Paolini

Gordon Wallace

Neural recording electrodes suffer from poor signal to noise ratio, charge density, biostability and biocompatibility. This paper investigates the ability of conducting polymer coated electrodes to record acute neural response in a systematic manner, allowing in depth comparison of electrochemical and electrophysiological response. Approach. Polypyrrole (Ppy) and poly-3,4-ethylenedioxythiophene (PEDOT) doped with sulphate (SO4) or para-toluene sulfonate (pTS) were used to coat iridium neural recording electrodes. Detailed electrochemical and electrophysiological investigations were undertaken to compare the effect of these materials on acute in vivo recording. Main results. A range of charge density and impedance responses were seen with each respectively doped …