Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Engineering

PDF

Selected Works

Gordon Wallace

Conductive

Publication Year

Articles 1 - 4 of 4

Full-Text Articles in Physical Sciences and Mathematics

Surface Properties And Interaction Forces Of Biopolymer-Doped Conductive Polypyrrole Surfaces By Atomic Force Microscopy, Jani M. Pelto, Suvi P. Haimi, Aliisa S. Siljander, Susanna S. Miettinen, Kirsi M. Tappura, Michael J. Higgins, Gordon G. Wallace Mar 2014

Surface Properties And Interaction Forces Of Biopolymer-Doped Conductive Polypyrrole Surfaces By Atomic Force Microscopy, Jani M. Pelto, Suvi P. Haimi, Aliisa S. Siljander, Susanna S. Miettinen, Kirsi M. Tappura, Michael J. Higgins, Gordon G. Wallace

Gordon Wallace

Surface properties and electrical charges are critical factors elucidating cell interactions on biomaterial surfaces. The surface potential distribution and the nanoscopic and microscopic surface elasticity of organic polypyrrole-hyaluronic acid (PPy-HA) were studied by atomic force microscopy (AFM) in a fluid environment in order to explain the observed enhancement in the attachment of human adipose stem cells on positively charged PPy-HA films. The electrostatic force between the AFM tip and a charged PPy-HA surface, the tip-sample adhesion force, and elastic moduli were estimated from the AFM force curves, and the data were fitted to electrostatic double-layer and elastic contact models. The …


A Merocyanine-Based Conductive Polymer, Klaudia K. Wagner, Michele Zanoni, Anastasia Elliott, Pawel W. Wagner, Robert P. Byrne, Larisa Florea, Dermot Diamond, Keith Gordon, Gordon G. Wallace, David L. Officer Mar 2014

A Merocyanine-Based Conductive Polymer, Klaudia K. Wagner, Michele Zanoni, Anastasia Elliott, Pawel W. Wagner, Robert P. Byrne, Larisa Florea, Dermot Diamond, Keith Gordon, Gordon G. Wallace, David L. Officer

Gordon Wallace

We report the first example of a conducting polymer with a merocyanine incorporated into the polymer backbone by electropolymerisation of a spiropyran moiety covalently linked between two alkoxythiophene units. Utilising the known metal coordination capabilities of merocyanines, introduction of cobalt ions into the electropolymerisation led to an enhancement of the conductivity, morphology and optical properties of the polymer films.


Electrically Conductive Coatings Of Nickel And Polypyrrole/Poly(2- Methoxyaniline-5-Sulfonic Acid) On Nylon Lycra® Textiles, B C. Kim, P C. Innis, Gordon G. Wallace, C T.J Low, F C. Walsh, W J. Cho, K H. Yu Mar 2014

Electrically Conductive Coatings Of Nickel And Polypyrrole/Poly(2- Methoxyaniline-5-Sulfonic Acid) On Nylon Lycra® Textiles, B C. Kim, P C. Innis, Gordon G. Wallace, C T.J Low, F C. Walsh, W J. Cho, K H. Yu

Gordon Wallace

Woven nylon Lycra® has been coated with finely-divided electroless nickel-phosphorus, polypyrrole and electroless nickel/polypyrrole to produce flexible and electrically conductive textiles. The coated textiles were tested for their electrochemical activity, electrical resistivity and resistivity in response to mechanical strain. Pre-dyeing the textile with poly(2-methoxyaniline-5-sulfonic acid) (PMAS) prior to electroless metallization by electroless nickel and via chemical polymerization of polypyrrole was found to be beneficial in enhancing the resultant coating as well as stabilizing surface resistance responses when exposed to a wide range of strain. The mass gain due to the nickel coating was found to increase linearly with deposition time. …


Electrically Conductive, Tough Hydrogels With Ph Sensitivity, Sina Naficy, Joselito M. Razal, Geoffrey M. Spinks, Gordon G. Wallace, Philip G. Whitten Mar 2013

Electrically Conductive, Tough Hydrogels With Ph Sensitivity, Sina Naficy, Joselito M. Razal, Geoffrey M. Spinks, Gordon G. Wallace, Philip G. Whitten

Gordon Wallace

Electrically conductive, mechanically tough hydrogels based on a double network (DN) comprised of poly(ethylene glycol) methyl ether methacrylate (PPEGMA) and poly(acrylic acid) (PAA) were produced. Poly(3,4-ethylenedioxythiophene) (PEDOT) was chemically polymerized within the tough DN gel to provide electronic conductivity. The effects of pH on the tensile and compressive mechanical properties of the fully swollen hydrogels, along with their electrical conductivity and swelling ratio were determined. Compressive and tensile strengths as high as 11.6 and 0.6 MPa, respectively, were obtained for hydrogels containing PEDOT with a maximum conductivity of 4.3 S cm-1. This conductivity is the highest yet reported for hydrogel …