Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 5 of 5

Full-Text Articles in Physical Sciences and Mathematics

Optimization And Control Of Production Of Graphene, Atharva Hans, Nimish M. Awalgaonkar, Majed Alrefae, Ilias Bilionis, Timothy S. Fisher Aug 2017

Optimization And Control Of Production Of Graphene, Atharva Hans, Nimish M. Awalgaonkar, Majed Alrefae, Ilias Bilionis, Timothy S. Fisher

The Summer Undergraduate Research Fellowship (SURF) Symposium

Graphene is a 2-dimensional element of high practical importance. Despite its exceptional properties, graphene’s real applications in industrial or commercial products have been limited. There are many methods to produce graphene, but none has been successful in commercializing its production. Roll-to-roll plasma chemical vapor deposition (CVD) is used to manufacture graphene at large scale. In this research, we present a Bayesian linear regression model to predict the roll-to-roll plasma system’s electrode voltage and current; given a particular set of inputs. The inputs of the plasma system are power, pressure and concentration of gases; hydrogen, methane, oxygen, nitrogen and argon. This …


Computer-Aided Design Of Algorithms Of Pulsed Control Of Arc Welding Process Based On Numerical Simulation, Oksana I. Shpigunova, Anatoliy A. Glazunov Oct 2016

Computer-Aided Design Of Algorithms Of Pulsed Control Of Arc Welding Process Based On Numerical Simulation, Oksana I. Shpigunova, Anatoliy A. Glazunov

The 8th International Conference on Physical and Numerical Simulation of Materials Processing

No abstract provided.


Design Optimization Of A Stochastic Multi-Objective Problem: Gaussian Process Regressions For Objective Surrogates, Juan Sebastian Martinez, Piyush Pandita, Rohit K. Tripathy, Ilias Bilionis Aug 2016

Design Optimization Of A Stochastic Multi-Objective Problem: Gaussian Process Regressions For Objective Surrogates, Juan Sebastian Martinez, Piyush Pandita, Rohit K. Tripathy, Ilias Bilionis

The Summer Undergraduate Research Fellowship (SURF) Symposium

Multi-objective optimization (MOO) problems arise frequently in science and engineering situations. In an optimization problem, we want to find the set of input parameters that generate the set of optimal outputs, mathematically known as the Pareto frontier (PF). Solving the MOO problem is a challenge since expensive experiments can be performed only a constrained number of times and there is a limited set of data to work with, e.g. a roll-to-roll microwave plasma chemical vapor deposition (MPCVD) reactor for manufacturing high quality graphene. State-of-the-art techniques, e.g. evolutionary algorithms; particle swarm optimization, require a large amount of observations and do not …


Analysis Of The Fabrication Conditions In Organic Field-Effect Transistors, Rachel M. Rahn, Yan Zhao, Jianguo Mei Aug 2015

Analysis Of The Fabrication Conditions In Organic Field-Effect Transistors, Rachel M. Rahn, Yan Zhao, Jianguo Mei

The Summer Undergraduate Research Fellowship (SURF) Symposium

Polymer-based organic field-effect transistors have raised substantial awareness because they enable low-cost, solution processing techniques, and have the potential to be implemented in flexible, disposable organic electronic devices. The performance of these devices is highly dependent on the processing conditions, as well as the intrinsic properties of the polymer. Processing conditions play an important role in semiconductor film formation and device performance. These factors may provide an important link between structure and performance. In this study, an empirical analysis tool, Process Scout, was applied to assess processing factors such as polymer concentration and silicon modification. This sanctioned the creation of …


Energy Systems Analysis For A Solar Economy, Dharik Sanchan Mallapragada Oct 2013

Energy Systems Analysis For A Solar Economy, Dharik Sanchan Mallapragada

Open Access Dissertations

The use of solar energy for human needs faces challenges owing to its relatively low energy intensity and intermittent availability, coupled with the constrained availability of renewable carbon and land resources. This study uses systems analysis tools to identify carbon and energy efficient transformations of solar energy for different purposes, including transportation fuels and grid-scale energy storage. These efforts have been complemented with a feasibility analysis of existing fossil-energy and other hybrid pathways.

In an era of limited fossil resources, liquid fuels from sustainably available (SA) biomass could meet the energy needs of the transportation sector. We present a method …