Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 3 of 3

Full-Text Articles in Physical Sciences and Mathematics

Energy-Efficient Computational Chemistry: Comparison Of X86 And Arm Systems, Kristopher Keipert, Gaurav Mitra, Vaibhav Sunriyal, Sarom S. Leang, Masha Sosonkina, Alistair P. Rendell, Mark S. Gordon Nov 2015

Energy-Efficient Computational Chemistry: Comparison Of X86 And Arm Systems, Kristopher Keipert, Gaurav Mitra, Vaibhav Sunriyal, Sarom S. Leang, Masha Sosonkina, Alistair P. Rendell, Mark S. Gordon

Computational Modeling & Simulation Engineering Faculty Publications

The computational efficiency and energy-to-solution of several applications using the GAMESS quantum chemistry suite of codes is evaluated for 32-bit and 64-bit ARM-based computers, and compared to an x86 machine. The x86 system completes all benchmark computations more quickly than either ARM system and is the best choice to minimize time to solution. The ARM64 and ARM32 computational performances are similar to each other for Hartree-Fock and density functional theory energy calculations. However, for memory-intensive second-order perturbation theory energy and gradient computations the lower ARM32 read/write memory bandwidth results in computation times as much as 86% longer than on the …


Changing Cpu Frequency In Comd Proxy Application Offloaded To Intel Xeon Phi Co-Processors, Gary Lawson, Masha Sosonkina, Yuzhong Shen Jan 2015

Changing Cpu Frequency In Comd Proxy Application Offloaded To Intel Xeon Phi Co-Processors, Gary Lawson, Masha Sosonkina, Yuzhong Shen

Computational Modeling & Simulation Engineering Faculty Publications

Obtaining exascale performance is a challenge. Although the technology of today features hardware with very high levels of concurrency, exascale performance is primarily limited by energy consumption. This limitation has lead to the use of GPUs and specialized hardware such as many integrated core (MIC) co-processors and FPGAs for computation acceleration. The Intel Xeon Phi co-processor, built upon the MIC architecture, features many low frequency, energy efficient cores. Applications, even those which do not saturate the large vector processing unit in each core, may benefit from the energy-efficient hardware and software of the Xeon Phi. This work explores the energy …


Potential Of Cognitive Computing And Cognitive Systems, Ahmed K. Noor Jan 2015

Potential Of Cognitive Computing And Cognitive Systems, Ahmed K. Noor

Computational Modeling & Simulation Engineering Faculty Publications

Cognitive computing and cognitive technologies are game changers for future engineering systems, as well as for engineering practice and training. They are major drivers for knowledge automation work, and the creation of cognitive products with higher levels of intelligence than current smart products. This paper gives a brief review of cognitive computing and some of the cognitive engineering systems activities. The potential of cognitive technologies is outlined, along with a brief description of future cognitive environments, incorporating cognitive assistants - specialized proactive intelligent software agents designed to follow and interact with humans and other cognitive assistants across the environments. The …