Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Engineering

None

Carbon

Publication Year
Publication

Articles 1 - 2 of 2

Full-Text Articles in Physical Sciences and Mathematics

A Seemless Three-Dimensional Carbon Nanotube Graphene Hybrid Material, Yu Zhu, Lei Li, Gilberto Casillas, Zhengzong Sun, Zheng Yan, Gedeng Ruan, Zhiwei Peng, Abdul-Rahman Raji, Carter Kittrell, Robert Hauge, James Tour May 2014

A Seemless Three-Dimensional Carbon Nanotube Graphene Hybrid Material, Yu Zhu, Lei Li, Gilberto Casillas, Zhengzong Sun, Zheng Yan, Gedeng Ruan, Zhiwei Peng, Abdul-Rahman Raji, Carter Kittrell, Robert Hauge, James Tour

Yu Zhu

Graphene and single-walled carbon nanotubes are carbon materials that exhibit excellent electrical conductivities and large specific surface areas. Theoretical work suggested that a covalently bonded graphene/single-walled carbon nanotube hybrid material would extend those properties to three dimensions, and be useful in energy storage and nanoelectronic technologies. Here we disclose a method to bond graphene and single-walled carbon nanotubes seamlessly during the growth stage. The hybrid material exhibits a surface area 42,000m2 g1 with ohmic contact from the vertically aligned single-walled carbon nanotubes to the graphene. Using aberration-corrected scanning transmission electron microscopy, we observed the covalent transformation of sp2 carbon between …


A Conductive Polypyrrole-Coated, Sulfur-Carbon Nanotube Composite For Use In Lithium-Sulfur Batteries, Jianli Wang, Lin Lu, Dongqi Shi, Richard Tandiono, Zhaoxiang Wang, Konstantin Konstantinov, Hua Liu Jul 2013

A Conductive Polypyrrole-Coated, Sulfur-Carbon Nanotube Composite For Use In Lithium-Sulfur Batteries, Jianli Wang, Lin Lu, Dongqi Shi, Richard Tandiono, Zhaoxiang Wang, Konstantin Konstantinov, Hua Liu

Jianli Wang

A novel ternary composite, polypyrrole (PPy)-coated sulphur-carbon nanotube (S-CNT), is synthesised by using an in situ, one-pot method. Firstly, elemental sulfur is loaded into the CNT network by a solution-based processing technique. Then conducting PPy is coated on the surface of the S-CNT composite to form the S-CNT-PPy ternary composite by carrying out polymerization of the pyrrole monomer in situ. The ternary composite is tested as a cathode for lithium-sulfur batteries. The results show that PPy coating improves significantly the performance of the binary composites (S-CNT and S-PPy). The conducting PPy is believed to serve multiple functions in the composite: …