Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 4 of 4

Full-Text Articles in Physical Sciences and Mathematics

Ionic Liquid Assisted Synthesis Of Porous Carbons From Rice Husk For Supercapacitors, Han-Fang Zhang, Feng Wei, Jian Sun, Meng-Ying Jing, Xiao-Jun He Dec 2019

Ionic Liquid Assisted Synthesis Of Porous Carbons From Rice Husk For Supercapacitors, Han-Fang Zhang, Feng Wei, Jian Sun, Meng-Ying Jing, Xiao-Jun He

Journal of Electrochemistry

It is still a challenge to prepare carbon materials with high specific surface area at low cost from renewable resources. Herein, the authors report an efficient approach to synthesize porous carbons (PCs) from rice husk with ionic liquid (1-butyl-3-methylimidazolium hexafluorophosphate (BMIMPF6)) as a template and an activation agent. The as-made PCs featured the high specific surface area up to 1438 m2·g-1. As electrodes for supercapacitors, PCs showed a high specific capacitance of 256 F·g-1 at 0.05 A·g-1 in 6 mol·L-1 KOH aqueous electrolyte and a good rate performance of 211 F·g …


Fabrication And Characterization Of Electrical Energy Storage And Harvesting Energy Devices Using Gel Electrolytes, Belqasem Aljafari Nov 2019

Fabrication And Characterization Of Electrical Energy Storage And Harvesting Energy Devices Using Gel Electrolytes, Belqasem Aljafari

USF Tampa Graduate Theses and Dissertations

Redox-active materials in the bulk of gel electrolytes are unquestionably holding the primary roles in developing energy harvesting and storage technology. Both technologies are necessary in order to cope with the current challenges of the environmental crises of global warming and finite non-renewable sources while the demand for energy modern societies have been speedily increased. One of the most challenges of making a hybrid device of energy conversion and storage is the cost of the fabrication process. Therefore, gel electrolyte-based materials with redox-active properties can potentially be a promising solution to improve the performance of electrochemical and photoelectrochemical devices for …


Cvd Preparation And Application Of 3d Graphene In Electrochemical Energy Storage, Yong-Kang Xia, Ming-Yuan Gu, Hong-Guan Yang, Xin-Zhi Yu, Bing-An Lu Feb 2019

Cvd Preparation And Application Of 3d Graphene In Electrochemical Energy Storage, Yong-Kang Xia, Ming-Yuan Gu, Hong-Guan Yang, Xin-Zhi Yu, Bing-An Lu

Journal of Electrochemistry

Three-dimensional (3D) graphene combinations with the excellent intrinsic properties of graphene and the 3D micro/nano porous structures provide a graphene foam with high specific surface area, excellent mechanical strength and fast electron and mass transports. The 3D graphene foam and its composite nanomaterials are widely used in the fields of nano-electronics, energy storage, chemical and biological sensing. The 3D graphene foam prepared by chemical vapor deposition (CVD) method is of high purity and crystallinity. In this review, a brief overview in the CVD preparations of 3D graphene and properties of CVD prepared 3D graphene based nanomaterials in electrochemical energy storage …


Charge Storage In Wo³ Polymorphs And Their Application As Supercapacitor Electrode Material, Vaibhav Lokhande, Abhishek Lokhande, Gon Namkoong, Jin Hyeok Kim, Taeksoo Ji Jan 2019

Charge Storage In Wo³ Polymorphs And Their Application As Supercapacitor Electrode Material, Vaibhav Lokhande, Abhishek Lokhande, Gon Namkoong, Jin Hyeok Kim, Taeksoo Ji

Electrical & Computer Engineering Faculty Publications

Tungsten oxide is a versatile material with different applications. It has many polymorphs with varying performance in energy storage application. We report simple and facile way to synthesize four phases of tungsten oxide from same precursor materials only by changing the pH and temperature values. Monoclinic, hexagonal, orthorhombic and tetragonal phase obtained, were analyzed and tested for supercapacitor application. The electrochemical analysis of four phases indicates that the hexagonal phase is best-suited electrode material for supercapacitor. The hexagonal phase exhibits higher specific capacitance (377.5 Fg-1 at 2 mVs-1), higher surface capacitive contribution (75%), better stability and rate …