Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 24 of 24

Full-Text Articles in Physical Sciences and Mathematics

Carbide-Derived Carbon By Electrochemical Etching Of Vanadium Carbides, Luis G.B. Camargo, Benjamin G. Palazzo, Greg Taylor, Zach A. Norris, Yash K. Patel, Jeffrey D. Hettinger, Lei Yu Nov 2017

Carbide-Derived Carbon By Electrochemical Etching Of Vanadium Carbides, Luis G.B. Camargo, Benjamin G. Palazzo, Greg Taylor, Zach A. Norris, Yash K. Patel, Jeffrey D. Hettinger, Lei Yu

Jeffrey Hettinger

Carbide-derived Carbon (CDC) has been demonstrated to be an excellent electrode material for electrochemical devices including supercapacitors due to its chemical and electrochemical stability, large specific surface area and controllable pore size and morphology. Currently, CDC is prepared from metal carbides by chlorination in a chlorine gas atmosphere at temperatures of 350°C or higher. In this paper, conversion using electrochemical methods is reported, which can be achieved by oxidizing vanadium carbides (VC or V2C) in aqueous solutions at room temperature and a mild electrode potential to prepare CDC thin film as electrode materials for “on-chip” supercapacitiors. It was found that …


Evolution And Rationale For United States Department Of Defense Electromagnetic Pulse Protection Standard, George H. Baker Iii Nov 2017

Evolution And Rationale For United States Department Of Defense Electromagnetic Pulse Protection Standard, George H. Baker Iii

George H Baker

The United States (US) Department of Defense (DoD) Electromagnetic Pulse (EMP) protection standard offers a solid basis for protecting commercial communication, data, and control facilities. Because of the standard’s shielded barrier and test requirements, it is not surprising that there is a strong temptation within industry and government to dismiss the MIL-STD 188-125 approach in favor of less rigorous protection methods. It is important to understand that US DoD EMP protection standard for fixed facilities, MIL-STD-188-125, reflects an evolution by trial and error that spanned a period of decades beginning with the acquisition of the Minuteman Missile System in the …


Proposal For A Dod Combined Battlefield Electromagnetic Environmental Effects (E3) Initiative, George H. Baker Iii Nov 2017

Proposal For A Dod Combined Battlefield Electromagnetic Environmental Effects (E3) Initiative, George H. Baker Iii

George H Baker

The presentation emphasizes the growing importance of electromagnetic survivability and compatibility. Operation Desert Storm demonstrated the clear military advantage provided by sophisticated electronic weapon and communication systems. In addition, the offensive tactic of taking out the enemy's eyes and ears during the air war paid off, giving our military decisive air superiority. The lessons for the future are clear. High-tech electronics now so dominates the battlefield that the outcome of future conflicts could well be decided by electronics attrition rather than human casualties. Our Desert Storm experience thus accentuates the importance of guaranteeing that our electronic systems will not be …


Testimony Of Dr. George H. Baker, Senior Advisor To The Congressional Emp Commission, George H. Baker Iii Nov 2017

Testimony Of Dr. George H. Baker, Senior Advisor To The Congressional Emp Commission, George H. Baker Iii

George H Baker

This is the script of testimony before the Federal Energy Regulatory Commission. It offers a vision for a future in which our electric power systems will be able to operate through or quickly recover from catastrophic failure due to electromagnetic pulse (EMP), cyber, and physical attacks. The scope of the term ‘EMP’ used in this testimony includes both naturally occurring solar storms and the more energetic man-made EMP hazards. The vision has been discussed with members of the electric power industry, and prominent EMP/cyber/physical protection advocates who find it to be supportable and actionable. The nature of EMP, cyber, and …


Introduction To Atomic Requirements, William L. Honig Oct 2017

Introduction To Atomic Requirements, William L. Honig

William L Honig

An introduction to requirements and the importance of making single atomic requirements statements. Atomic requirements have advantages and improve the requirements process, support requirement verification and validation, enable traceability, support testability of systems, and provide management advantages. Why has there been so little emphasis on atomic requirements?


Requirements Quick Notes, William L. Honig, Shingo Takada Oct 2017

Requirements Quick Notes, William L. Honig, Shingo Takada

William L Honig

A short introduction to requirements and their role in system development. Includes industry definition of requirements, overview of basic requirements process including numbering of requirements, ties to testing, and traceability. An introduction to requirements quality attributes (correct, unambiguous, etc.) Includes references to requirements process, numbering, and quality papers.


An Example Of Atomic Requirements - Login Screen, William L. Honig Oct 2017

An Example Of Atomic Requirements - Login Screen, William L. Honig

William L Honig

A simple example of what an atomic or individual or singular requirement statement should be. Using the example of the familiar login screen, shows the evolution from a low quality initial attempt at requirements to a complete atomic requirement statement. Introduces the idea of a system glossary to support the atomic requirement.


Requirements Metrics - Definitions Of A Working List Of Possible Metrics For Requirements Quality, William L. Honig Oct 2017

Requirements Metrics - Definitions Of A Working List Of Possible Metrics For Requirements Quality, William L. Honig

William L Honig

A work in progress to define a metrics set for requirements. Metrics are defined that apply to either the entire requirements set (requirements document as a whole) or individual atomic (or singular, individual) requirements statements. Requirements are identified with standard names and a identification scheme and include both subjective and objective measures. An example metric for the full set of requirements: Rd2 - Requirements Consistency, Is the set of atomic requirements internally consistent, with no contradictions, no duplication between individual requirements? An example of a metric for a single requirement: Ra4 - Requirement Verifiability, How adequately can this requirement be …


Atomic Requirements Quick Notes, William L. Honig, Shingo Takada Oct 2017

Atomic Requirements Quick Notes, William L. Honig, Shingo Takada

William L Honig

Working paper on atomic requirements for systems development and the importance of singular, cohesive, individual requirements statements. Covers possible definitions of atomic requirements, and their characteristics. Atomic requirements improve many parts of the development process from requirements to testing and contracting.


Grnsight: A Web Application And Service For Visualizing Models Of Small- To Medium-Scale Gene Regulatory Networks, Kam D. Dahlquist, John David N. Dionisio, Ben G. Fitzpatrick, Nicole A. Anguiano, Anindita Varshneya, Britain J. Southwick, Mihir Samdarshi Aug 2017

Grnsight: A Web Application And Service For Visualizing Models Of Small- To Medium-Scale Gene Regulatory Networks, Kam D. Dahlquist, John David N. Dionisio, Ben G. Fitzpatrick, Nicole A. Anguiano, Anindita Varshneya, Britain J. Southwick, Mihir Samdarshi

Ben G. Fitzpatrick

GRNsight is a web application and service for visualizing models of gene regulatory networks (GRNs). A gene regulatory network (GRN) consists of genes, transcription factors, and the regulatory connections between them which govern the level of expression of mRNA and protein from genes. The original motivation came from our efforts to perform parameter estimation and forward simulation of the dynamics of a differential equations model of a small GRN with 21 nodes and 31 edges. We wanted a quick and easy way to visualize the weight parameters from the model which represent the direction and magnitude of the influence of …


Comparing Multiple Turbulence Restoration Algorithms Performance On Noisy Anisoplanatic Imagery, Michael Armand Rucci, Russell C. Hardie, Alexander J. Dapore Jun 2017

Comparing Multiple Turbulence Restoration Algorithms Performance On Noisy Anisoplanatic Imagery, Michael Armand Rucci, Russell C. Hardie, Alexander J. Dapore

Russell C. Hardie

In this paper, we compare the performance of multiple turbulence mitigation algorithms to restore imagery degraded by atmospheric turbulence and camera noise. In order to quantify and compare algorithm performance, imaging scenes were simulated by applying noise and varying levels of turbulence. For the simulation, a Monte-Carlo wave optics approach is used to simulate the spatially and temporally varying turbulence in an image sequence. A Poisson-Gaussian noise mixture model is then used to add noise to the observed turbulence image set. These degraded image sets are processed with three separate restoration algorithms: Lucky Look imaging, bispectral speckle imaging, and a …


Analysis Of Various Classification Techniques For Computer Aided Detection System Of Pulmonary Nodules In Ct, Barath Narayanan Narayanan, Russell C. Hardie, Temesguen Messay Jun 2017

Analysis Of Various Classification Techniques For Computer Aided Detection System Of Pulmonary Nodules In Ct, Barath Narayanan Narayanan, Russell C. Hardie, Temesguen Messay

Russell C. Hardie

Lung cancer is the leading cause of cancer death in the United States. It usually exhibits its presence with the formation of pulmonary nodules. Nodules are round or oval-shaped growth present in the lung. Computed Tomography (CT) scans are used by radiologists to detect such nodules. Computer Aided Detection (CAD) of such nodules would aid in providing a second opinion to the radiologists and would be of valuable help in lung cancer screening. In this research, we study various feature selection methods for the CAD system framework proposed in FlyerScan. Algorithmic steps of FlyerScan include (i) local contrast enhancement (ii) …


On The Simulation And Mitigation Of Anisoplanatic Optical Turbulence For Long Range Imaging, Russell C. Hardie, Daniel A. Lemaster Jun 2017

On The Simulation And Mitigation Of Anisoplanatic Optical Turbulence For Long Range Imaging, Russell C. Hardie, Daniel A. Lemaster

Russell C. Hardie

We describe a numerical wave propagation method for simulating long range imaging of an extended scene under anisoplanatic conditions. Our approach computes an array of point spread functions (PSFs) for a 2D grid on the object plane. The PSFs are then used in a spatially varying weighted sum operation, with an ideal image, to produce a simulated image with realistic optical turbulence degradation. To validate the simulation we compare simulated outputs with the theoretical anisoplanatic tilt correlation and differential tilt variance. This is in addition to comparing the long- and short-exposure PSFs, and isoplanatic angle. Our validation analysis shows an …


Recursive Non-Local Means Filter For Video Denoising, Redha A. Ali, Russell C. Hardie Jun 2017

Recursive Non-Local Means Filter For Video Denoising, Redha A. Ali, Russell C. Hardie

Russell C. Hardie

In this paper, we propose a computationally efficient algorithm for video denoising that exploits temporal and spatial redundancy. The proposed method is based on non-local means (NLM). NLM methods have been applied successfully in various image denoising applications. In the single-frame NLM method, each output pixel is formed as a weighted sum of the center pixels of neighboring patches, within a given search window. The weights are based on the patch intensity vector distances. The process requires computing vector distances for all of the patches in the search window. Direct extension of this method from 2D to 3D, for video …


Block Matching And Wiener Filtering Approach To Optical Turbulence Mitigation And Its Application To Simulated And Real Imagery With Quantitative Error Analysis, Russell C. Hardie, Michael Armand Rucci, Barry K. Karch, Alexander J. Dapore Jun 2017

Block Matching And Wiener Filtering Approach To Optical Turbulence Mitigation And Its Application To Simulated And Real Imagery With Quantitative Error Analysis, Russell C. Hardie, Michael Armand Rucci, Barry K. Karch, Alexander J. Dapore

Russell C. Hardie

We present a block-matching and Wiener filtering approach to atmospheric turbulence mitigation for long-range imaging of extended scenes. We evaluate the proposed method, along with some benchmark methods, using simulated and real-image sequences. The simulated data are generated with a simulation tool developed by one of the authors. These data provide objective truth and allow for quantitative error analysis. The proposed turbulence mitigation method takes a sequence of short-exposure frames of a static scene and outputs a single restored image. A block-matching registration algorithm is used to provide geometric correction for each of the individual input frames. The registered frames …


Simulation Of Anisoplanatic Imaging Through Optical Turbulence Using Numerical Wave Propagation With New Validation Analysis, Russell C. Hardie, Jonathan D. Power, Daniel A. Lemaster, Douglas R. Droege, Szymon Gladysz, Santasri Bose-Pillai Jun 2017

Simulation Of Anisoplanatic Imaging Through Optical Turbulence Using Numerical Wave Propagation With New Validation Analysis, Russell C. Hardie, Jonathan D. Power, Daniel A. Lemaster, Douglas R. Droege, Szymon Gladysz, Santasri Bose-Pillai

Russell C. Hardie

We present a numerical wave propagation method for simulating imaging of an extended scene under anisoplanatic conditions. While isoplanatic simulation is relatively common, few tools are specifically designed for simulating the imaging of extended scenes under anisoplanatic conditions. We provide a complete description of the proposed simulation tool, including the wave propagation method used. Our approach computes an array of point spread functions (PSFs) for a two-dimensional grid on the object plane. The PSFs are then used in a spatially varying weighted sum operation, with an ideal image, to produce a simulated image with realistic optical turbulence degradation. The degradation …


Differential Tilt Variance Effects Of Turbulence In Imagery: Comparing Simulation With Theory, Daniel A. Lemaster, Russell C. Hardie, Szymon Gladysz, Matthew D. Howard, Michael Armand Rucci, Matthew E. Trippel, Jonathan D. Power, Barry K. Karch Jun 2017

Differential Tilt Variance Effects Of Turbulence In Imagery: Comparing Simulation With Theory, Daniel A. Lemaster, Russell C. Hardie, Szymon Gladysz, Matthew D. Howard, Michael Armand Rucci, Matthew E. Trippel, Jonathan D. Power, Barry K. Karch

Russell C. Hardie

Differential tilt variance is a useful metric for interpreting the distorting effects of turbulence in incoherent imaging systems. In this paper, we compare the theoretical model of differential tilt variance to simulations. Simulation is based on a Monte Carlo wave optics approach with split step propagation. Results show that the simulation closely matches theory. The results also show that care must be taken when selecting a method to estimate tilts.


Recursive Robust Pca Or Recursive Sparse Recovery In Large But Structured Noise, Chenlu Qiu, Namrata Vaswani, Brian Lois, Leslie Hogben Jun 2017

Recursive Robust Pca Or Recursive Sparse Recovery In Large But Structured Noise, Chenlu Qiu, Namrata Vaswani, Brian Lois, Leslie Hogben

Namrata Vaswani

This paper studies the recursive robust principal components analysis problem. If the outlier is the signal-of-interest, this problem can be interpreted as one of recursively recovering a time sequence of sparse vectors, St, in the presence of large but structured noise, Lt. The structure that we assume on Lt is that Lt is dense and lies in a low-dimensional subspace that is either fixed or changes slowly enough. A key application where this problem occurs is in video surveillance where the goal is to separate a slowly changing background (Lt) from moving foreground objects (St) on-the-fly. To solve the above …


Prediction Of Remaining Life Of Power Transformers Based On Left Truncated And Right Censored Lifetime Data, Yili Hong, William Q. Meeker, James D. Mccalley Jun 2017

Prediction Of Remaining Life Of Power Transformers Based On Left Truncated And Right Censored Lifetime Data, Yili Hong, William Q. Meeker, James D. Mccalley

James McCalley

Prediction of the remaining life of high-voltage power transformers is an important issue for energy companies because of the need for planning maintenance and capital expenditures. Lifetime data for such transformers are complicated because transformer lifetimes can extend over many decades and transformer designs and manufacturing practices have evolved. We were asked to develop statistically-based predictions for the lifetimes of an energy company’s fleet of high-voltage transmission and distribution transformers. The company’s data records begin in 1980, providing information on installation and failure dates of transformers. Although the dataset contains many units that were installed before 1980, there is no …


Highly Directional Receiver And Source Antennas Using Photonic Band Gap Crystals, Rana Biswas, Gary L. Tuttle, Ekmel Ozbay, Burak Temelkuran, Mihail Sigalas, Kai-Ming Ho Jun 2017

Highly Directional Receiver And Source Antennas Using Photonic Band Gap Crystals, Rana Biswas, Gary L. Tuttle, Ekmel Ozbay, Burak Temelkuran, Mihail Sigalas, Kai-Ming Ho

Gary Tuttle

A directional antenna made with photonic band gap structures has been presented. The directional antenna is formed with two photonic band gap structures oriented back to back and separated from each other by a distance to form a resonant cavity between the photonic band gap structures. An antenna element is placed in the resonant cavity. The resonant frequency of the cavity is tuned by adjusting the distance between the photonic band gap structures. The resonant cavity can be asymmetrical or symmetrical.


Weak Anti-Localization And Quantum Oscillations Of Surface States In Topological Insulator Bi2se2te, Lihong Bao, Liang He, Nicholas R. Meyer, Xufeng Kou, Peng Zhang, Zhi-Gang Chen, Alexei V. Fedorov, Trevor M. Riedemann, Thomas A. Lograsso, Kang L. Wang, Gary Tuttle, Faxian Xiu Jun 2017

Weak Anti-Localization And Quantum Oscillations Of Surface States In Topological Insulator Bi2se2te, Lihong Bao, Liang He, Nicholas R. Meyer, Xufeng Kou, Peng Zhang, Zhi-Gang Chen, Alexei V. Fedorov, Trevor M. Riedemann, Thomas A. Lograsso, Kang L. Wang, Gary Tuttle, Faxian Xiu

Gary Tuttle

Topological insulators, a new quantum state of matter, create exciting opportunities for studying topological quantum physics and for exploring spintronic applications due to their gapless helical metallic surface states. Here, we report the observation of weak anti-localization and quantum oscillations originated from surface states in Bi2Se2Te crystals. Angle-resolved photoemission spectroscopy measurements on cleaved Bi2Se2Te crystals show a well-defined linear dispersion without intersection of the conduction band. The measured weak anti-localization effect agrees well with the Hikami-Larkin-Nagaoka model and the extracted phase coherent length shows a power-law dependence with temperature ( ∼T−0.44), indicating the presence of the surface states. …


Ferromagnetism Of Magnetically Doped Topological Insulators In Crxbi2− Xte3 Thin Films, Yan Ni, Z. Zhang, Ikenna C. Nlebedim, M. Ravi Hadimani, Gary L. Tuttle, David C. Jiles Jun 2017

Ferromagnetism Of Magnetically Doped Topological Insulators In Crxbi2− Xte3 Thin Films, Yan Ni, Z. Zhang, Ikenna C. Nlebedim, M. Ravi Hadimani, Gary L. Tuttle, David C. Jiles

Gary Tuttle

We investigated the effect of magnetic doping on magnetic and transport properties of Bi2Te3thin films. CrxBi2−xTe3 thin films with x = 0.03, 0.14, and 0.29 were grown epitaxially on mica substrate with low surface roughness (∼0.4 nm). It is found that Cr is an electron acceptor in Bi2Te3 and increases the magnetization of CrxBi2−xTe3. When x = 0.14 and 0.29,ferromagnetism appears in CrxBi2−xTe3 thin films, where anomalous Hall effect and weak localization of magnetoconductance were observed. The Curie temperature, coercivity, and remnant Hall resistance of thin films increase with increasing Cr concentration. The Arrott-Noakes plot demonstrates that the critical mechanism …


Network Connection Blocker, Method, And Computer Readable Memory For Monitoring Connections In A Computer Network And Blocking The Unwanted Connections, Douglas W. Jacobson, James A. Davis Jun 2017

Network Connection Blocker, Method, And Computer Readable Memory For Monitoring Connections In A Computer Network And Blocking The Unwanted Connections, Douglas W. Jacobson, James A. Davis

Douglas Jacobson

A network connection blocker for monitoring connections between host computers in a network and blocking the unwanted connections. The host computers transmit connection packets between each other in accordance with a network protocol suite when seeking to establish, providing network services with, and close the connections. The network protocol suite includes a connection oriented transport layer protocol. The network connection blocker comprises a network interface that receives the connection packets transmitted between the host computers. It also comprises a blocking module that processes the received connection packets to detect the unwanted connections. The blocking module then generates connection packets in …


Chiral Light Intrinsically Couples To Extrinsic/Pseudo-Chiral Metasurfaces Made Of Tilted Gold Nanowires, Alessandro Belardini, Marco Centini, Grigore Leahu, David C. Hooper, Roberto Li Voti, Eugenio Fazio, Joseph W. Haus, Andrew Sarangan, Ventsislav K. Valev, Concita Sibilia Feb 2017

Chiral Light Intrinsically Couples To Extrinsic/Pseudo-Chiral Metasurfaces Made Of Tilted Gold Nanowires, Alessandro Belardini, Marco Centini, Grigore Leahu, David C. Hooper, Roberto Li Voti, Eugenio Fazio, Joseph W. Haus, Andrew Sarangan, Ventsislav K. Valev, Concita Sibilia

Andrew Sarangan

Extrinsic or pseudo-chiral (meta)surfaces have an achiral structure, yet they can give rise to circular dichroism when the experiment itself becomes chiral. Although these surfaces are known to yield differences in reflected and transmitted circularly polarized light, the exact mechanism of the interaction has never been directly demonstrated. Here we present a comprehensive linear and nonlinear optical investigation of a metasurface composed of tilted gold nanowires. In the linear regime, we directly demonstrate the selective absorption of circularly polarised light depending on the orientation of the metasurface. In the nonlinear regime, we demonstrate for the first time how second harmonic …