Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 19 of 19

Full-Text Articles in Physical Sciences and Mathematics

A Multicarrier Technique For Monte Carlo Simulation Of Electrothermal Transport In Nanoelectronics, Tyler J. Spence Oct 2019

A Multicarrier Technique For Monte Carlo Simulation Of Electrothermal Transport In Nanoelectronics, Tyler J. Spence

Doctoral Dissertations

The field of microelectronics plays an important role in many areas of engineering and science, being ubiquitous in aerospace, industrial manufacturing, biotechnology, and many other fields. Today, many micro- and nanoscale electronic devices are integrated into one package. e capacity to simulate new devices accurately is critical to the engineering design process, as device engineers use simulations to predict performance characteristics and identify potential issues before fabrication. A problem of particular interest is the simulation of devices which exhibit exotic behaviors due to non-equilibrium thermodynamics and thermal effects such as self-heating. Frequently, it is desirable to predict the level of …


Effective Magnetic And Electric Response Of Composite Materials, Mona Hassan Alsaleh Nov 2018

Effective Magnetic And Electric Response Of Composite Materials, Mona Hassan Alsaleh

Doctoral Dissertations

Metamaterials (MMs) are nanocomposite materials consisting of metal-dielectric resonators much smaller in size than the wavelength of the incident light. Common examples of metamaterials are based on split ring resonators (SRRs), parallel wires or strips and fishnet structures. These types of materials are designed and fabricated in order to provide unique optical responses to the incident electromagnetic radiation that are not available in naturally existing materials. The MMs can exhibit unusual properties such as strong magnetism at terahertz (THz) and optical frequencies. Additionally, negative index materials (NIMs) can provide negative index of refraction which can be used in many applications …


Electromagnetic Wave-Matter Interactions In Complex Opto-Electronic Materials And Devices, Raj Kumar Vinnakota Nov 2018

Electromagnetic Wave-Matter Interactions In Complex Opto-Electronic Materials And Devices, Raj Kumar Vinnakota

Doctoral Dissertations

This dissertation explores the fundamentals of light-matter interaction towards applications in the field of Opto-electronic and plasmonic devices. In its core, this dissertation attempts and succeeds in the the modeling of light-matter interactions, which is of high importance for better understanding the rich physics underlying the dynamics of electromagnetic field interactions with charged particles. Here, we have developed a self-consistent multi-physics model of electromagnetism, semiconductor physics and thermal effects which can be readily applied to the field of plasmotronics and Selective Laser Melting (SLM). Plasmotronics; a sub-field of photonics has experienced a renaissance in recent years by providing a large …


Understanding The Surface Fouling Mechanism Of Ultrananocrystalline Diamond Microelectrodes Using Microfluidics For Neurochemical Detection, An-Yi Chang Jul 2017

Understanding The Surface Fouling Mechanism Of Ultrananocrystalline Diamond Microelectrodes Using Microfluidics For Neurochemical Detection, An-Yi Chang

Doctoral Dissertations

Electrochemical methods are widely used for chronic neurochemical sensing, but thus far, the organic solution redox reactions fouled the electrodes' surface. It caused the reduction of sensitivity and the electrodes' lifetime.

Here, we present the boron-doped nanocrystalline diamond microelectrodes (BDUNCD) as the next generation electrode material for neurochemical sensor development. To aid in long-term chronic monitoring of neurochemicals, they have a wide window of electrochemical potential, extremely low background current, and excellent chemical inertness. The main research goal is to reduce the rate of electrode fouling due to the reaction by-products, and significantly extend their useful lifetime.

We systematically characterize …


Electrochemical Behavior Of Dense Electrodes For Impedancemetric Nox Sensors, Nabamita Pal Jul 2017

Electrochemical Behavior Of Dense Electrodes For Impedancemetric Nox Sensors, Nabamita Pal

Doctoral Dissertations

NOx (NO and NO2) exhaust gas sensors for diesel powered vehicles have traditionally consisted of porous platinum (Pt) electrodes along with a dense ZrO2 based electrolyte. Advancement in diesel engine technology results in lower NOx emissions. Although Pt is chemically and mechanically tolerant to the extreme exhaust gas environment, it is also a strong catalyst for oxygen reduction, which can interfere with the detection of NOx at concentrations below 100 ppm. Countering this behavior can add to the complexity and cost of the conventional NO x sensor design. Recent studies have shown that dense electrodes are less prone to heterogeneous …


Intrusion Detection System Of Industrial Control Networks Using Network Telemetry, Stanislav Ponomarev Jul 2015

Intrusion Detection System Of Industrial Control Networks Using Network Telemetry, Stanislav Ponomarev

Doctoral Dissertations

Industrial Control Systems (ICSs) are designed, implemented, and deployed in most major spheres of production, business, and entertainment. ICSs are commonly split into two subsystems - Programmable Logic Controllers (PLCs) and Supervisory Control And Data Acquisition (SCADA) systems - to achieve high safety, allow engineers to observe states of an ICS, and perform various configuration updates. Before wide adoption of the Internet, ICSs used "air-gap" security measures, where the ICS network was isolated from other networks, including the Internet, by a physical disconnect [1]. This level of security allowed ICS protocol designers to concentrate on the availability and safety of …


Quantum Levitation Using Metamaterials, Venkatesh K. Pappakrishnan Jul 2014

Quantum Levitation Using Metamaterials, Venkatesh K. Pappakrishnan

Doctoral Dissertations

The emergence of an attractive vacuum force (Casimir force) between two purely dielectric materials can lead to an increase in the friction and the stiction effects in nanoscale devices, resulting in degradation or decreased performance. Thus, it is of high practical importance that the conditions for the reversal of the Casimir force from attractive to repulsive are identified. Although the repulsive Casimir force has been considered for high dielectric materials as an intermediate (between the plates) medium, so far no realistic system has been proposed that can demonstrate quantum levitation with air/vacuum as a host medium. Since air is the …


On Electromagnetic And Quantum Invisibility, Pattabhiraju Chowdary Mundru Jul 2014

On Electromagnetic And Quantum Invisibility, Pattabhiraju Chowdary Mundru

Doctoral Dissertations

The principle objective of this dissertation is to investigate the fundamental properties of electromagnetic wave interactions with artificially fabricated materials i.e., metamaterials for application in advanced stealth technology called electromagnetic cloaking. The main goal is to theoretically design a metamaterial shell around an object that completely eliminates the dipolar and higher order multipolar scattering, thus making the object invisible.

In this context, we developed a quasi-effective medium theory that determines the optical properties of multi-layered-composites beyond the quasi-static limit. The proposed theory exactly reproduces the far-field scattering/extinction cross sections through an iterative process in which mode-dependent quasi-effective impedances of the …


A Knowledge Discovery Approach For The Detection Of Power Grid State Variable Attacks, Nathan Wallace Jul 2014

A Knowledge Discovery Approach For The Detection Of Power Grid State Variable Attacks, Nathan Wallace

Doctoral Dissertations

As the level of sophistication in power system technologies increases, the amount of system state parameters being recorded also increases. This data not only provides an opportunity for monitoring and diagnostics of a power system, but it also creates an environment wherein security can be maintained. Being able to extract relevant information from this pool of data is one of the key challenges still yet to be obtained in the smart grid. The potential exists for the creation of innovative power grid cybersecurity applications, which harness the information gained from advanced analytics. Such analytics can be based on the extraction …


Numerical Simulation Of Nanopulse Penetration Of Biological Matter Using The Adi-Fdtd Method, Fei Zhu Apr 2012

Numerical Simulation Of Nanopulse Penetration Of Biological Matter Using The Adi-Fdtd Method, Fei Zhu

Doctoral Dissertations

Nanopulses are ultra-wide-band (UWB) electromagnetic pulses with pulse duration of only a few nanoseconds and electric field amplitudes greater than 105 V/m. They have been widely used in the development of new technologies in the field of medicine. Therefore, the study of the nanopulse bioeffects is important to ensure the appropriate application with nanopulses in biomedical and biotechnological settings. The conventional finite-difference time-domain (FDTD) method for solving Maxwell's equations has been proven to be an effective method to solve the problems related to electromagnetism. However, its application is restricted by the Courant, Friedrichs, and Lewy (CFL) stability condition that confines …


Chasing Μ, Joseph P. Cannon Apr 2009

Chasing Μ, Joseph P. Cannon

Doctoral Dissertations

Conducting and semiconducting, π-conjugated polymers are promising materials for micro- and nano-optoelectronic applications because of their widely tunable physical, electrical, and optical properties. These polymers have been used to fabricate a number of electronic devices including field-effect transistors, light-emitting diodes, and photovoltaic cells. However, widespread commercial application of these devices has yet to be realized, due in part to poor electronic transport characteristics and device degradation.

Nanostructuring of conjugated polymers by various methods has demonstrated marked improvements in molecular ordering and electronic transport. In this research, nanoscale, tubular structures of semiconducting polymers fabricated by template wetting nanofabrication procedures are explored. …


Poly(Ethylenedioxythiophene) Based Electronic Devices For Sensor Applications, Jie Liu Jul 2008

Poly(Ethylenedioxythiophene) Based Electronic Devices For Sensor Applications, Jie Liu

Doctoral Dissertations

Organic electronic devices, based on Poly (3,4-ethylenedioxythiophene)-Poly (styrene sulfonic acid) (PEDOT-PSS) as the active layer for sensor applications, have been studied. Two sets of sensors have been developed. In one case, sensors consisting of PEDOT-PSS resistors have been realized and demonstrated for soil moisture monitoring. The resistor model for the soil moisture sensor enables the sensor device to be fabricated at low cost and easily tested with a simple structure. Unlike the large dimension device used in Time Domain Reflectometry (TDR), the sensors are small and are capable of capturing microscale behavior of moisture in soil which is useful for …


Wireless Sensor Network Modeling Using Modified Recurrent Neural Network: Application To Fault Detection, Azzam Issam Moustapha Apr 2008

Wireless Sensor Network Modeling Using Modified Recurrent Neural Network: Application To Fault Detection, Azzam Issam Moustapha

Doctoral Dissertations

Wireless Sensor Networks (WSNs) consist of a large number of sensors, which in turn have their own dynamics. They interact with each other and the base station, which controls the network. In multi-hop wireless sensor networks, information hops from one node to another and finally to the network gateway or base station. Dynamic Recurrent Neural Networks (RNNs) consist of a set of dynamic nodes that provide internal feedback to their own inputs. They can be used to simulate and model dynamic systems such as a network of sensors.

In this dissertation, a dynamic model of wireless sensor networks and its …


Nanodot-Based Organic Memory Devices, Zhengchun Liu Jan 2006

Nanodot-Based Organic Memory Devices, Zhengchun Liu

Doctoral Dissertations

In this study, resistor-type, diode-type, and transistor-type organic memory devices were investigated, aiming at the low-cost plastic integrated circuit applications. A series of solution-processing techniques including spin-coating, inkjet printing, and self-assembly were employed to fabricate these devices.

The organic resistive memory device is based on a novel molecular complex film composed of tetracyanoquinodimethane (TCNQ) and a soluble methanofullerene derivative [6,6]-phenyl C61-butyric acid methyl ester (PCBM). It has an Al/molecules/Al sandwich structure. The molecular layer was formed by spin-coating technique instead of expensive vacuum deposition method. The current-voltage characteristics show that the device switches from the initial 'low' conduction state to …


Understanding Wavelet Analysis And Filters For Engineering Applications, Chethan Bangalore Parameswariah Apr 2003

Understanding Wavelet Analysis And Filters For Engineering Applications, Chethan Bangalore Parameswariah

Doctoral Dissertations

Wavelets are signal-processing tools that have been of interest due to their characteristics and properties. Clear understanding of wavelets and their properties are a key to successful applications. Many theoretical and application-oriented papers have been written. Yet the choice of a right wavelet for a given application is an ongoing quest that has not been satisfactorily answered. This research has successfully identified certain issues, and an effort has been made to provide an understanding of wavelets by studying the wavelet filters in terms of their pole-zero and magnitude-phase characteristics. The magnitude characteristics of these filters have flat responses in both …


Pattern Recognition For Electric Power System Protection, Yong Sheng Oct 2002

Pattern Recognition For Electric Power System Protection, Yong Sheng

Doctoral Dissertations

The objective of this research is to demonstrate pattern recognition tools such as decision trees (DTs) and neural networks that will improve and automate the design of relay protection functions in electric power systems. Protection functions that will benefit from the research include relay algorithms for high voltage transformer protection (TP) and for high impedance fault (HIF) detection. A methodology, which uses DTs and wavelet analysis to distinguish transformer internal faults from other conditions that are easily mistaken for internal faults, has been developed. Also, a DT based solution is proposed to discriminate HIFs from normal operations that may confuse …


Cramer-Rao Bound And Optimal Amplitude Estimator Of Superimposed Sinusoidal Signals With Unknown Frequencies, Shaohui Jia Apr 2000

Cramer-Rao Bound And Optimal Amplitude Estimator Of Superimposed Sinusoidal Signals With Unknown Frequencies, Shaohui Jia

Doctoral Dissertations

This dissertation addresses optimally estimating the amplitudes of superimposed sinusoidal signals with unknown frequencies. The Cramer-Rao Bound of estimating the amplitudes in white Gaussian noise is given, and the maximum likelihood estimator of the amplitudes in this case is shown to be asymptotically efficient at high signal to noise ratio but finite sample size. Applying the theoretical results to signal resolutions, it is shown that the optimal resolution of multiple signals using a finite sample is given by the maximum likelihood estimator of the amplitudes of signals.


Bottom-Up Design Of Artificial Neural Network For Single-Lead Electrocardiogram Beat And Rhythm Classification, Srikanth Thiagarajan Jan 2000

Bottom-Up Design Of Artificial Neural Network For Single-Lead Electrocardiogram Beat And Rhythm Classification, Srikanth Thiagarajan

Doctoral Dissertations

Performance improvement in computerized Electrocardiogram (ECG) classification is vital to improve reliability in this life-saving technology. The non-linearly overlapping nature of the ECG classification task prevents the statistical and the syntactic procedures from reaching the maximum performance. A new approach, a neural network-based classification scheme, has been implemented in clinical ECG problems with much success. The focus, however, has been on narrow clinical problem domains and the implementations lacked engineering precision. An optimal utilization of frequency information was missing. This dissertation attempts to improve the accuracy of neural network-based single-lead (lead-II) ECG beat and rhythm classification. A bottom-up approach defined …


Fuzzy Logic Applied To System Control To Enhance Commercial Appliance Performance, Glenn Moffett Jul 1998

Fuzzy Logic Applied To System Control To Enhance Commercial Appliance Performance, Glenn Moffett

Doctoral Dissertations

The purpose of this research is to determine the usefulness of fuzzy logic and fuzzy control when applied to a commercial appliance. Fuzzy logic is a structured, model-free estimator that approximates a function through linguistic input/output associations. Fuzzy rule-based systems apply these methods to solve many types of "real-world" problems, especially where a system is difficult to model, is controlled by a human operator or expert, or where ambiguity or vagueness is common.

This dissertation presents fuzzy sets, fuzzy systems, and fuzzy control, with an example conveying the use of fuzzy control of a consumer product and an overview of …