Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 22 of 22

Full-Text Articles in Physical Sciences and Mathematics

3-D Fabry–Pérot Cavities Sculpted On Fiber Tips Using A Multiphoton Polymerization Process, Jonathan W. Smith, Jeremiah C. Williams, Joseph S. Suelzer, Nicholas G. Usechak, Hengky Chandrahalim Dec 2020

3-D Fabry–Pérot Cavities Sculpted On Fiber Tips Using A Multiphoton Polymerization Process, Jonathan W. Smith, Jeremiah C. Williams, Joseph S. Suelzer, Nicholas G. Usechak, Hengky Chandrahalim

Faculty Publications

This paper presents 3-D Fabry–Pérot (FP) cavities fabricated directly onto cleaved ends of low-loss optical fibers by a two-photon polymerization (2PP) process. This fabrication technique is quick, simple, and inexpensive compared to planar microfabrication processes, which enables rapid prototyping and the ability to adapt to new requirements. These devices also utilize true 3-D design freedom, facilitating the realization of microscale optical elements with challenging geometries. Three different device types were fabricated and evaluated: an unreleased single-cavity device, a released dual-cavity device, and a released hemispherical mirror dual-cavity device. Each iteration improved the quality of the FP cavity's reflection spectrum. The …


Deep Learning-Based, Passive Fault Tolerant Control Facilitated By A Taxonomy Of Cyber-Attack Effects, Dean C. Wardell Dec 2020

Deep Learning-Based, Passive Fault Tolerant Control Facilitated By A Taxonomy Of Cyber-Attack Effects, Dean C. Wardell

Theses and Dissertations

In the interest of improving the resilience of cyber-physical control systems to better operate in the presence of various cyber-attacks and/or faults, this dissertation presents a novel controller design based on deep-learning networks. This research lays out a controller design that does not rely on fault or cyber-attack detection. Being passive, the controller’s routine operating process is to take in data from the various components of the physical system, holistically assess the state of the physical system using deep-learning networks and decide the subsequent round of commands from the controller. This use of deep-learning methods in passive fault tolerant control …


Improving Closely Spaced Dim Object Detection Through Improved Multiframe Blind Deconvolution, Ronald M. Aung Sep 2020

Improving Closely Spaced Dim Object Detection Through Improved Multiframe Blind Deconvolution, Ronald M. Aung

Theses and Dissertations

This dissertation focuses on improving the ability to detect dim stellar objects that are in close proximity to a bright one, through statistical image processing using short exposure images. The goal is to improve the space domain awareness capabilities with the existing infrastructure. Two new algorithms are developed. The first one is through the Neighborhood System Blind Deconvolution where the data functions are separated into the bright object, the neighborhood system, and the background functions. The second one is through the Dimension Reduction Blind Deconvolution, where the object function is represented by the product of two matrices. Both are designed …


Autoassociative-Heteroassociative Neural Network, Claudia V. Kropas-Hughes, Steven K. Rogers, Mark E. Oxley, Matthew Kabrisky Jun 2020

Autoassociative-Heteroassociative Neural Network, Claudia V. Kropas-Hughes, Steven K. Rogers, Mark E. Oxley, Matthew Kabrisky

AFIT Patents

An efficient neural network computing technique capable of synthesizing two sets of output signal data from a single input signal data set. The method and device of the invention involves a unique integration of autoassociative and heteroassociative neural network mappings, the autoassociative neural network mapping enabling a quality metric for assessing the generalization or prediction accuracy of the heteroassociative neural network mapping.


Statistical Photo-Calibration Of Photo-Detectors For Radiometry Without Calibrated Light Sources Comprising An Arithmetic Unit To Determine A Gain And A Bias From Mean Values And Variance Values, Adrian M. Catarius, Nicholas Yielding, Stephen C. Cain, Michael D. Seal Jun 2020

Statistical Photo-Calibration Of Photo-Detectors For Radiometry Without Calibrated Light Sources Comprising An Arithmetic Unit To Determine A Gain And A Bias From Mean Values And Variance Values, Adrian M. Catarius, Nicholas Yielding, Stephen C. Cain, Michael D. Seal

AFIT Patents

Calibration of a radiometry system uses a readout circuit of a photo-detector to provide first and second measurements collected over first and second integration times, respectively, where the first and second measurements are related to a photonic input to the photo-detector by a gain and a bias. First mean and variance values are computed for a plurality of first measurements. Second mean and variance values are computed for a plurality of second measurements. The gain and bias are determined from the first and second mean values and the first and second variance values without the use of a calibrated source. …


Monte Carlo Tree Search Applied To A Modified Pursuit/Evasion Scotland Yard Game With Rendezvous Spaceflight Operation Applications, Joshua A. Daughtery Jun 2020

Monte Carlo Tree Search Applied To A Modified Pursuit/Evasion Scotland Yard Game With Rendezvous Spaceflight Operation Applications, Joshua A. Daughtery

Theses and Dissertations

This thesis takes the Scotland Yard board game and modifies its rules to mimic important aspects of space in order to facilitate the creation of artificial intelligence for space asset pursuit/evasion scenarios. Space has become a physical warfighting domain. To combat threats, an understanding of the tactics, techniques, and procedures must be captured and studied. Games and simulations are effective tools to capture data lacking historical context. Artificial intelligence and machine learning models can use simulations to develop proper defensive and offensive tactics, techniques, and procedures capable of protecting systems against potential threats. Monte Carlo Tree Search is a bandit-based …


Machine Learning Modeling Of Horizontal Photovoltaics Using Weather And Location Data, Christil Pasion, Torrey J. Wagner, Clay Koschnick, Steven J. Schuldt, Jada B. Williams, Kevin Hallinan May 2020

Machine Learning Modeling Of Horizontal Photovoltaics Using Weather And Location Data, Christil Pasion, Torrey J. Wagner, Clay Koschnick, Steven J. Schuldt, Jada B. Williams, Kevin Hallinan

Faculty Publications

Solar energy is a key renewable energy source; however, its intermittent nature and potential for use in distributed systems make power prediction an important aspect of grid integration. This research analyzed a variety of machine learning techniques to predict power output for horizontal solar panels using 14 months of data collected from 12 northern-hemisphere locations. We performed our data collection and analysis in the absence of irradiation data—an approach not commonly found in prior literature. Using latitude, month, hour, ambient temperature, pressure, humidity, wind speed, and cloud ceiling as independent variables, a distributed random forest regression algorithm modeled the combined …


Learning Set Representations For Lwir In-Scene Atmospheric Compensation, Nicholas M. Westing [*], Kevin C. Gross, Brett J. Borghetti, Jacob A. Martin, Joseph Meola Apr 2020

Learning Set Representations For Lwir In-Scene Atmospheric Compensation, Nicholas M. Westing [*], Kevin C. Gross, Brett J. Borghetti, Jacob A. Martin, Joseph Meola

Faculty Publications

Atmospheric compensation of long-wave infrared (LWIR) hyperspectral imagery is investigated in this article using set representations learned by a neural network. This approach relies on synthetic at-sensor radiance data derived from collected radiosondes and a diverse database of measured emissivity spectra sampled at a range of surface temperatures. The network loss function relies on LWIR radiative transfer equations to update model parameters. Atmospheric predictions are made on a set of diverse pixels extracted from the scene, without knowledge of blackbody pixels or pixel temperatures. The network architecture utilizes permutation-invariant layers to predict a set representation, similar to the work performed …


Single-Pulse, Kerr-Effect Mueller Matrix Lidar Polarimeter, Keyser, Christian K., Richard K. Martin, Helena Lopez-Aviles, Khanh Nguyen, Arielle M. Adams, Demetrios Christodoulides Apr 2020

Single-Pulse, Kerr-Effect Mueller Matrix Lidar Polarimeter, Keyser, Christian K., Richard K. Martin, Helena Lopez-Aviles, Khanh Nguyen, Arielle M. Adams, Demetrios Christodoulides

Faculty Publications

We present a novel light detection and ranging (LiDAR) polarimeter that enables measurement of 12 of 16 sample Mueller matrix elements in a single, 10 ns pulse. The new polarization state generator (PSG) leverages Kerr phase modulation in a birefringent optical fiber, creating a probe pulse characterized by temporally varying polarization. Theoretical expressions for the Polarization State Generator (PSG) Stokes vector are derived for birefringent walk-off and no walk-off and incorporated into a time-dependent polarimeter signal model employing multiple polarization state analyzers (PSA). Polarimeter modeling compares the Kerr effect and electro-optic phase modulator–based PSG using a single Polarization State Analyzer …


One-Dimensional Multi-Frame Blind Deconvolution Using Astronomical Data For Spatially Separable Objects, Marc R. Brown Mar 2020

One-Dimensional Multi-Frame Blind Deconvolution Using Astronomical Data For Spatially Separable Objects, Marc R. Brown

Theses and Dissertations

Blind deconvolution is used to complete missions to detect adversary assets in space and to defend the nation's assets. A new algorithm was developed to perform blind deconvolution for objects that are spatially separable using multiple frames of data. This new one-dimensional approach uses the expectation-maximization algorithm to blindly deconvolve spatially separable objects. This object separation reduces the size of the object matrix from an NxN matrix to two singular vectors of length N. With limited knowledge of the object and point spread function the one-dimensional algorithm successfully deconvolved the objects in both simulated and laboratory data.


Object Detection With Deep Learning To Accelerate Pose Estimation For Automated Aerial Refueling, Andrew T. Lee Mar 2020

Object Detection With Deep Learning To Accelerate Pose Estimation For Automated Aerial Refueling, Andrew T. Lee

Theses and Dissertations

Remotely piloted aircraft (RPAs) cannot currently refuel during flight because the latency between the pilot and the aircraft is too great to safely perform aerial refueling maneuvers. However, an AAR system removes this limitation by allowing the tanker to directly control the RP A. The tanker quickly finding the relative position and orientation (pose) of the approaching aircraft is the first step to create an AAR system. Previous work at AFIT demonstrates that stereo camera systems provide robust pose estimation capability. This thesis first extends that work by examining the effects of the cameras' resolution on the quality of pose …


Comparison Of Visual Simultaneous Localization And Mapping Methods For Fixed-Wing Aircraft Using Slambench2, Patrick R. Latcham Mar 2020

Comparison Of Visual Simultaneous Localization And Mapping Methods For Fixed-Wing Aircraft Using Slambench2, Patrick R. Latcham

Theses and Dissertations

Visual Simultaneous Localization and Mapping (VSLAM) algorithms have evolved rapidly in the last few years, however there has been little research evaluating current algorithm's effectiveness and limitations when applied to tracking the position of a fixed-wing aerial vehicle. This research looks to evaluate current monocular VSLAM algorithms' performance on aerial vehicle datasets using the SLAMBench2 benchmarking suite. The algorithms tested are MonoSLAM, PTAM, OKVIS, LSDSLAM, ORB-SLAM2, and SVO, all of which are built into the SLAMBench2 software. The algorithms' performance is evaluated using simulated datasets generated in the AftrBurner Engine. The datasets were designed to test the quality of each …


Extracting Range Data From Images Using Focus Error, Erik M. Madden Mar 2020

Extracting Range Data From Images Using Focus Error, Erik M. Madden

Theses and Dissertations

Air-to-air refueling (AAR) has become a staple when performing long missions with aircraft. With modern technology, however, people have begun to research how to perform this task autonomously. Automated air-to-air refueling (A3R) is this exact concept. Combining many different systems, the idea is to allow computers on the aircraft to link up via the refueling boom, refuel, and detach before resuming pilot control. This document lays out one of the systems that is needed to perform A3R, namely, the system that extracts range data. While stereo cameras perform such tasks, there is interest in finding other ways of accomplishing the …


Near Real-Time Zigbee Device Discrimination Using Cb-Dna Features, Yousuke Z. Matsui Mar 2020

Near Real-Time Zigbee Device Discrimination Using Cb-Dna Features, Yousuke Z. Matsui

Theses and Dissertations

Currently, Low-Rate Wireless Personal Area Networks (LR-WPAN) based on the Institute of Electrical and Electronics Engineers (IEEE) 802.15.4 standard are at risk due to open-source tools which allow bad actors to exploit unauthorized network access through various cyberattacks by falsifying bit-level credentials. This research investigates implementing a Radio Frequency (RF) air monitor to perform Near RealTime (NRT) discrimination of Zigbee devices using the IEEE 802.15.4 standard. The air monitor employed a Multiple Discriminant Analysis/Euclidean Distance classifier to discriminate Zigbee devices based upon Constellation-Based Distinct Native Attribute (CB-DNA) fingerprints. Through the use of CB-DNA fingerprints, Physical Layer (PHY) characteristics unique to …


Maximizing Accuracy Through Stereo Vision Camera Positioning For Automated Aerial Refueling, Kirill A. Sarantsev Mar 2020

Maximizing Accuracy Through Stereo Vision Camera Positioning For Automated Aerial Refueling, Kirill A. Sarantsev

Theses and Dissertations

Aerial refueling is a key component of the U.S. Air Force strategic arsenal. When two aircraft interact in an aerial refueling operation, the accuracy of relative navigation estimates are critical for the safety, accuracy and success of the mission. Automated Aerial Refueling (AAR) looks to improve the refueling process by creating a more effective system and allowing for Unmanned Aerial Vehicle(s) (UAV) support. This paper considers a cooperative aerial refueling scenario where stereo cameras are used on the tanker to direct a \boom" (a large, long structure through which the fuel will ow) into a port on the receiver aircraft. …


Measurement Of The 160Gd(P,N)160Tb Excitation Function From 4 18 Mev, Using A Stacked Foil Technique, Ryan K. Chapman Mar 2020

Measurement Of The 160Gd(P,N)160Tb Excitation Function From 4 18 Mev, Using A Stacked Foil Technique, Ryan K. Chapman

Theses and Dissertations

A stack of thin Gd, Ti, and Cu foils were irradiated with an 18 MeV proton beam at Lawrence-Berkeley National Laboratory's 88-Inch Cyclotron to investigate the 160Gd(p,n)160Tb nuclear reaction for nuclear forensics applications. This experiment will improve knowledge of 160Tb production rates, allowing 160Tb to be efficiently created in a foil stack consisting of other proton induced isotopes for forensics applications. A set of 15 measured cross sections between 4-18 MeV for 160Gd(p,n)160Tb were obtained using a stacked foil technique. The foil stack consisted of one stainless steel, one iron, fifteen gadolinium, …


Detection Of Reconnection Signatures In Solar Flares, Taylor R. Whitney Mar 2020

Detection Of Reconnection Signatures In Solar Flares, Taylor R. Whitney

Theses and Dissertations

Solar flare forecasting is limited by the current understanding of mechanisms that govern magnetic reconnection, the main physical phenomenon associated with these events. As a result, forecasting relies mainly on climatological correlations to historical events rather than the underlying physics principles. Solar physics models place the neutral point of the reconnection event in the solar corona. Correspondingly, studies of photospheric magnetic fields indicate changes during solar flares -- particularly in relation to the field helicity -- on the solar surface as a result of the associated magnetic reconnection. This study utilizes data from the Solar Dynamics Observatory (SDO) Helioseismic and …


Simulation Of Sporadic-E Parameters Using Phase Screen Method, Daniel W. Stambovsky Mar 2020

Simulation Of Sporadic-E Parameters Using Phase Screen Method, Daniel W. Stambovsky

Theses and Dissertations

A phase screen simulation experiment is designed and implemented to model radio occultation through sporadic-E ionospheric disturbances between a GPS transmitter operating at the L1 frequency and a second receiving satellite in low earth orbit (LEO). Simulations were made to test the linear relationship between plasma intensity and scintillation S4 index both posited (Arras and Wickert, 2018) and contended (Gooch et al., 2020) in previous literature. Results brought into question both the linear relationship and the use of S4 as a whole and an alternate metric was sought.


Use Of Lidar In Automated Aerial Refueling To Improve Stereo Vision Systems, Michael R. Crowl Mar 2020

Use Of Lidar In Automated Aerial Refueling To Improve Stereo Vision Systems, Michael R. Crowl

Theses and Dissertations

The United States Air Force (USAF) executes five Core Missions, four of which depend on increased aircraft range. To better achieve global strike and reconnaissance, unmanned aerial vehicles (UAVs) require aerial refueling for extended missions. However, current aerial refueling capabilities are limited to manned aircraft due to technical difficulties to refuel UAVs mid-flight. The latency between a UAV operator and the UAV is too large to adequately respond for such an operation. To overcome this limitation, the USAF wants to create a capability to guide the refueling boom into the refueling receptacle. This research explores the use of light detection …


Synthesizing General Electromagnetic Partially Coherent Sources From Random, Correlated Complex Screens, Milo W. Hyde Iv Mar 2020

Synthesizing General Electromagnetic Partially Coherent Sources From Random, Correlated Complex Screens, Milo W. Hyde Iv

Faculty Publications

We present a method to generate any genuine electromagnetic partially coherent source (PCS) from correlated, stochastic complex screens. The method described here can be directly implemented on existing spatial-light-modulator-based vector beam generators and can be used in any application which utilizes electromagnetic PCSs. Our method is based on the genuine cross-spectral density matrix criterion. Applying that criterion, we show that stochastic vector field realizations (corresponding to a desired electromagnetic PCS) can be generated by passing correlated Gaussian random numbers through “filters” with space-variant transfer functions. We include step-by-step instructions on how to generate the electromagnetic PCS field realizations. As an …


Cyber-Physical Security With Rf Fingerprint Classification Through Distance Measure Extensions Of Generalized Relevance Learning Vector Quantization, Trevor J. Bihl, Todd J. Paciencia, Kenneth W. Bauer Jr., Michael A. Temple Feb 2020

Cyber-Physical Security With Rf Fingerprint Classification Through Distance Measure Extensions Of Generalized Relevance Learning Vector Quantization, Trevor J. Bihl, Todd J. Paciencia, Kenneth W. Bauer Jr., Michael A. Temple

Faculty Publications

Radio frequency (RF) fingerprinting extracts fingerprint features from RF signals to protect against masquerade attacks by enabling reliable authentication of communication devices at the “serial number” level. Facilitating the reliable authentication of communication devices are machine learning (ML) algorithms which find meaningful statistical differences between measured data. The Generalized Relevance Learning Vector Quantization-Improved (GRLVQI) classifier is one ML algorithm which has shown efficacy for RF fingerprinting device discrimination. GRLVQI extends the Learning Vector Quantization (LVQ) family of “winner take all” classifiers that develop prototype vectors (PVs) which represent data. In LVQ algorithms, distances are computed between exemplars and PVs, and …


Superconducting Phase Transition In Inhomogeneous Chains Of Superconducting Islands, Eduard Ilin, Irina Burkova, Xiangyu Song, Michael Pak, Dmitri S. Golubev, Alexey Bezryadin Jan 2020

Superconducting Phase Transition In Inhomogeneous Chains Of Superconducting Islands, Eduard Ilin, Irina Burkova, Xiangyu Song, Michael Pak, Dmitri S. Golubev, Alexey Bezryadin

Faculty Publications

We study one-dimensional chains of superconducting islands with a particular emphasis on the regime in which every second island is switched into its normal state, thus forming a superconductor-insulator-normal metal (S-I-N) repetition pattern. As is known since Giaever tunneling experiments, tunneling charge transport between a superconductor and a normal metal becomes exponentially suppressed, and zero-bias resistance diverges, as the temperature is reduced and the energy gap of the superconductor grows larger than the thermal energy. Here we demonstrate that this physical phenomenon strongly impacts transport properties of inhomogeneous superconductors made of weakly coupled islands with fluctuating values of the critical …