Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 16 of 16

Full-Text Articles in Physical Sciences and Mathematics

Experimental And Computational Study On Magnetic Nanowires Of Layered Titanates, Caleb Layne Heath May 2019

Experimental And Computational Study On Magnetic Nanowires Of Layered Titanates, Caleb Layne Heath

Graduate Theses and Dissertations

The intricate nanostructures of layered titanates are unique among nanomaterials due to their easy and inexpensive syntheses. These nanomaterials have been proven valuable for use in industries as varied as energy, water treatment, and healthcare, and can be produced at industrial scales using already existent equipment. They have complex morphology, and surface structure well suited to chemical modification and doping. However, there is a longstanding debate on their lattice structure after the doping. There is a long-unmet need to understand, using both experimental and simulation methods, how dopants alter the clay-like layered crystal structure and associated physical and chemical properties. …


Recent Progress On Tio2-Based Anode Materials For Sodium-Ion Batteries, Si-Tian Lian, Jian-Shuai Lv, Qiang Yu, Guang-Wu Hu, Zhuo Chen, Liang Zhou, Li-Qiang Mai Feb 2019

Recent Progress On Tio2-Based Anode Materials For Sodium-Ion Batteries, Si-Tian Lian, Jian-Shuai Lv, Qiang Yu, Guang-Wu Hu, Zhuo Chen, Liang Zhou, Li-Qiang Mai

Journal of Electrochemistry

Titanium dioxide (TiO2) represents a stable, low-cost, and nontoxic anode material for sodium-ion batteries (SIBs). However, the low electrical conductivity limits its electrochemical activity (specific capacity) and rate capability, hindering its widespread applications. In this article, we show that different crystal forms of TiO2 have different pore structures, resulting in the distinct sodium storage capacities. Accordingly, the article introduces how TiO2 microstructures influence sodium storage. The nanoparticle structure can improve the rate performance of the material due to its short ion diffusion distance, and the internal cavity of the hollow structure is beneficial to cycle stability. …


In Situ Extrinsic Doping Of Cdte Thin Films For Photovoltaic Applications, Imran Suhrid Khan Mar 2018

In Situ Extrinsic Doping Of Cdte Thin Films For Photovoltaic Applications, Imran Suhrid Khan

USF Tampa Graduate Theses and Dissertations

The Cadmium Telluride thin film solar cell is one of the leading photovoltaic technologies. Efficiency improvements in the past decade made it a very attractive and practical source of renewable energy. Considering the theoretical limit, there is still room for improvement, especially the cell’s open circuit voltage (VOC). To improve VOC, the p-type carrier concentration and minority carrier lifetime of the CdTe absorber needs to be improved. Both these parameters are directly related to the point defect distribution of the semiconductor, which is a function of deposition stoichiometry, dopant incorporation and post-deposition treatments.

CdTe films were deposited by the Elemental …


Ferromagnetism Of Magnetically Doped Topological Insulators In Crxbi2− Xte3 Thin Films, Yan Ni, Z. Zhang, Ikenna C. Nlebedim, M. Ravi Hadimani, Gary L. Tuttle, David C. Jiles Jun 2017

Ferromagnetism Of Magnetically Doped Topological Insulators In Crxbi2− Xte3 Thin Films, Yan Ni, Z. Zhang, Ikenna C. Nlebedim, M. Ravi Hadimani, Gary L. Tuttle, David C. Jiles

Gary Tuttle

We investigated the effect of magnetic doping on magnetic and transport properties of Bi2Te3thin films. CrxBi2−xTe3 thin films with x = 0.03, 0.14, and 0.29 were grown epitaxially on mica substrate with low surface roughness (∼0.4 nm). It is found that Cr is an electron acceptor in Bi2Te3 and increases the magnetization of CrxBi2−xTe3. When x = 0.14 and 0.29,ferromagnetism appears in CrxBi2−xTe3 thin films, where anomalous Hall effect and weak localization of magnetoconductance were observed. The Curie temperature, coercivity, and remnant Hall resistance of thin films increase with increasing Cr concentration. The Arrott-Noakes plot demonstrates that the critical mechanism …


Optical Down-Conversion In Doped Znse:Tb3+ Nanocrystals, Sandip Das, K. C. Mandal Apr 2015

Optical Down-Conversion In Doped Znse:Tb3+ Nanocrystals, Sandip Das, K. C. Mandal

Krishna C. Mandal

No abstract provided.


Investigation Of Cdznte Crystal Defects Using Scanning Probe Microscopy, Goutam Koley, J. Liu, K. C. Mandal Apr 2015

Investigation Of Cdznte Crystal Defects Using Scanning Probe Microscopy, Goutam Koley, J. Liu, K. C. Mandal

Krishna C. Mandal

No abstract provided.


Investigation Of Cdznte Crystal Defects Using Scanning Probe Microscopy, Goutam Koley, J. Liu, K. C. Mandal Apr 2015

Investigation Of Cdznte Crystal Defects Using Scanning Probe Microscopy, Goutam Koley, J. Liu, K. C. Mandal

Krishna C. Mandal

No abstract provided.


Optical Down-Conversion In Doped Znse:Tb3+ Nanocrystals, Sandip Das, K. C. Mandal Apr 2015

Optical Down-Conversion In Doped Znse:Tb3+ Nanocrystals, Sandip Das, K. C. Mandal

Krishna C. Mandal

No abstract provided.


Investigation Of Cdznte Crystal Defects Using Scanning Probe Microscopy, Goutam Koley, J. Liu, K. C. Mandal Apr 2015

Investigation Of Cdznte Crystal Defects Using Scanning Probe Microscopy, Goutam Koley, J. Liu, K. C. Mandal

Krishna C. Mandal

No abstract provided.


Optical Down-Conversion In Doped Znse:Tb3+ Nanocrystals, Sandip Das, K. C. Mandal Feb 2013

Optical Down-Conversion In Doped Znse:Tb3+ Nanocrystals, Sandip Das, K. C. Mandal

Faculty Publications

No abstract provided.


The Effect Of Polarization And Ingan Quantum Well Shape In Multiple Quantum Well Light Emitting Diode Heterostructures, Patrick M. Mcbride Jun 2012

The Effect Of Polarization And Ingan Quantum Well Shape In Multiple Quantum Well Light Emitting Diode Heterostructures, Patrick M. Mcbride

Master's Theses

Previous research in InGaN/GaN light emitting diodes (LEDs) employing semi-classical drift-diffusion models has used reduced polarization constants without much physical explanantion. This paper investigates possible physical explanations for this effective polarization reduction in InGaN LEDs through the use of the simulation software SiLENSe. One major problem of current LED simulations is the assumption of perfectly discrete transitions between the quantum well (QW) and blocking layers when experiments have shown this to not be the case. The In concentration profile within InGaN multiple quantum well (MQW) devices shows much smoother and delayed transitions indicative of indium diffusion and drift during …


Synthesis And Electrochemical Performance Of Xlifepo4·Yli3v2(Po4)3 Composites, Ping-Ping Ma, Zhi-Jian Liu, Jian-Hua Xia, Yu Chen, Pu Hu, Zhi-Chao Lu, Ding-Guo Xia Feb 2012

Synthesis And Electrochemical Performance Of Xlifepo4·Yli3v2(Po4)3 Composites, Ping-Ping Ma, Zhi-Jian Liu, Jian-Hua Xia, Yu Chen, Pu Hu, Zhi-Chao Lu, Ding-Guo Xia

Journal of Electrochemistry

A series of xLiFePO4·yLi3V2(PO4)3 composites were systematically synthesized through solid state reactions by variations in the proportions of LiFePO4 and Li3V2(PO4)3. The properties of the prepared compounds were investigated using X-ray diffraction (XRD), scanning electron microscopy (SEM) and electrochemical measurements. The capacity of 162.7 mAh/g at 0.2 C rate was obtained with the relatively good cycle stability and good conductivity for 0.95LiFePO4·0.05Li3V2(PO4)3 due to more uniformed distributed and smaller particle sizes.


The Electrochemical Properties Of Cathode Materials Limxv3-Xo8, Hui Yang, Gang-Gang Zhao, Juan Li Nov 2011

The Electrochemical Properties Of Cathode Materials Limxv3-Xo8, Hui Yang, Gang-Gang Zhao, Juan Li

Journal of Electrochemistry

The cathode material of LiMxV3-xO8 was fabricated by sol-gel method using citric acid as a chelating agent and doping transition metal ions M (Mn, Ti, Co and Ni). The structure, morphology and electrochemical proprieties of the LiMxV3-xO8 samples were investigated by XRD, TGA/DTA, SEM, charge-discharge and CV measurements. The results showed that different calcining temperatures result in different structures and morphologies, which lead to different discharge capacities. The specific discharge capacity of the sample calcined at 500℃ for 6 h was up to 300.4 mAh/g in the first cycle, and the capacity decreased with the increasing of calcining temperature. The …


Prerapation And Supercapacitor Property Of Al Doped Co_3o_4, Xin Ge, Ye Chen, Chun-Xia Zhang, Chang Shu Aug 2007

Prerapation And Supercapacitor Property Of Al Doped Co_3o_4, Xin Ge, Ye Chen, Chun-Xia Zhang, Chang Shu

Journal of Electrochemistry

With KOH as precipitator to prepare Aluminum doped Co3O4,X-ray diffraction indicated that the doping Al did not change the crystal structure of Co3O4.Electrochemical properties of the sample were tested by cyclic voltammetry and constant-current charge/discharge.The results showed that the chemical doping improved the specific capacitance.When the mol ratio of Co(Ⅱ) with Al(Ⅲ)was 1∶0.05,the specific capacitance was up to 518.07 F/g within 0~400 mV potenitial at current density 5 mA/cm2.


Investigation Of Cdznte Crystal Defects Using Scanning Probe Microscopy, Goutam Koley, J. Liu, K. C. Mandal Mar 2007

Investigation Of Cdznte Crystal Defects Using Scanning Probe Microscopy, Goutam Koley, J. Liu, K. C. Mandal

Faculty Publications

No abstract provided.


Supralinear Photoconductivity Of Copper Doped Semi-Insulating Gallium Arsenide, K. H. Schoenbach, R. P. Joshi, F. Peterkin, R. L. Druce Jan 1995

Supralinear Photoconductivity Of Copper Doped Semi-Insulating Gallium Arsenide, K. H. Schoenbach, R. P. Joshi, F. Peterkin, R. L. Druce

Bioelectrics Publications

We report on the intensity dependent supralinear photoconductivity in GaAs:Si:Cu material. The results of our measurements show that the effective carrier lifetime can change over two orders of magnitude with variations in the intensity of the optical excitation. A threshold intensity level has been observed and can be related to the occupancy of the deep copper level. Numerical simulations have also been carried out to analyze the trapping dynamics. The intensity dependent lifetimes obtained from the simulations match the experimental data very well. Finally, based on the nonlinear intensity dependence of the effective lifetimes, a possible low‐energy phototransistor application for …